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SUMMARY

Forced convective diffusion-reaction is considered for v_=ous axisymmetric extensional

convecting velocity in the neighborhood of a sphere. For Peclet numbers in the range 0.1 _ Pe _ 500

and for Damkohler numbers increasing with increasing Pe but in the overall range 0.02 _ Da < 10,

average and local Sherwood numbers have been computed. By introducing the eigenfunction expansion
c(r,0) ffi _ cn(r)Pn(cos0) into the forced convective diffusion equation for the concentration of a

chemical species undergoing a first order homogeneous reaction and by using properties of the
Legendre functions P,(cos0), the variable coefficient PDE can be reduced to a system of N+ 1 second

order ODEs for the radial functions c, (r), n_),l,2,...,N. The adaptive grid algorithm of Pereyra and

Lentini can be used to solve the corresponding 2(N+I) first order differential equations as a two-point
boundary value problem on 1 ,: r < r.. Convergence of the expansion for a specific value of N can

thus be established and provides "spectral" behavior as well as the full concentration field c(r,0).

INTRODUCTION

The prevalence of small often spherical or approximately spherical particles, bubbles, or

droplets in atmospheric physics, chemical reaction engineering, combustion science, and environmental
technology implies the small Reynolds number (Re << 1) assumed here. For concreteness a solid

sphere is also assumed. Unlike the axisymmetric uniform streaming motion past a sphere (Stokes,
1851) that is a reasonable assumption in the neighborhood of sedimenting particles or those in

fluidized beds, however, the flow field in neighborhood of most particles in other natural, industrial,

and laboratory circumstances is neither uniform nor can it be assumed to be the so-called slip velocity

characteristic of the ensemble average over all the particles in complex, even turbulent two phase flow
such as occurs in stirred tanks, for instance.

We are interested in considering other physically realistic - and therefore necessarily more

complicated - flow fields that would have another domain application. The ubiquitous spherical
geometry and the mathematical simplicity of axisymmetry make the axisymmetric extensional flows

(Re << 1) a natural candidate. The occurence of extensional flows, in particular of locally



axisymmmetriconesin the neighborhood of small spherical particles, bubbles, or drops, one of the

basic building blocks in the theology and flow of a wide variety of dispersions.
There are two axisymmetric extensional flow fields. The biaxiai and uniaxial flows both have

the same streamlines. However, the biaxial flow comes along the axes from z ffi ±_ and approaches the

poles of the sphere symmetrically, departing radially outwardly in the symmetry (x,y)-plane, whereas
the uniaxial flow is oppositely directed and approaches radially symmetrically in the equatorial plane

and departs along the ±z axes. Far from the sphere, the dimensionless Cartesian components of the

velocity are (U z ,U y ,U, ) = ±(x ,y ,-2z), with ± referring throughout to biaxial and uniaxial,

respectively.
For Re-0, all flow fields are at rest, and the Sherwood number is independent of the Peclet

number and depends solely on the Damkohler number, i.e., Sh-Sh (Dan). For Re << 1 but not

identically zero, Sh,.Sh We,Dan). Pe no more characterizes convection than Re characterizes the

velocity field. Different velocity fields convect heat and mass differently, even if they have the same
small non-zero Re and the same Pc. For Re-0, Sh'l+'/Dan, but for Re << 1, although the

axisymmetric uniform streaming flow and the axisymmetric extensional flows all three have the same

asymptote for Sh (viz., l+'/Daa) as Pe -. 0, for Pe << 1 but Pe ,, 0, the functional dependance upon

Pe, Dan will be different for the uniform flow, for the biaxial flow, and for the unlaxial flow,

ShffiSh(Pe,Dan) will be different, even though Pe and Dan are identical. What is more, the local mass
transfer coefficients Sh(0;Pe,Dan) will be even more different For a uniform streaming flow at

infinity, Pfeffer and his co-workers have studied homogeneous first order reactions for low Reynolds
number convective diffusion (Rutland and Pfeffer, 1967), (Chen and Pfeffer, 1970)

We compare and contrast the results for convective diffusion-reaction for biaxial and uniaxial
flows with one another and with those for the uniform streaming flow. Our emphasis, however, is on

the theoretical approach, the mathematical calculations, and the use of the Pereyra-Lentini adaptive

grid algorithm, above all on certain consu'aints and computational limitations that arise.

THEORETICAL APPROACH

Rather than directly attacking the forced convective diffusion/diffusion-reaction equation

numerically as a variable coefficient partial differential equation in which the extensional velocity field
introduces the known but complicated set of variable coefficients, we take another tack. We introduce

the eigenfunction expansion

c(r,O) = c°(r) po(COS 0) (1)

with the Pn(cos0) being Legendre functions and the radial functions c_(r) are unknown. By utilizing
properties of the P,(tt), it"cos0, we then reduce the single partial differential equation for c(r,0) to a

system of N+ 1 ordinary differential equations for the c_(r) and solve them numerically, as outlined in
the next section.

The dimensionless forced convective diffusion-reaction equation investigated may be written

Pe U . Vc = V 2c - Daz_ c , (2)

in which the second Damkohier number may be expressed in terms of the first,
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Da_ = Da 1 Pe , (3)

and the Peclet number Pe for the extensional flow utilizes the characteristic velocity E a, in which E
is the rate of strain at infinity and a is the radius of the solid sphere:

Pe - E a2/ _ , Da i - k/ E , Da u-- k a 2/ _ . (4)

The low Reynolds number axisymmetric extensional flow has two non-vanishing
dimensionless velocity components

5 -2 3 --4 20 ,Ur =+(r- _- r + _-r )(1 -3 cos )

=+/:-:-')('-3 0  osO).
(5)

The ± signs refer to the biaxial/uniaxial flows, respectively. The streamlines for the two are identical

and are shown in Figure 1, with the flow being oppositely directed along the streamlines. The biaxial

flow comes from infinity toward the poles and exits radially symmetrically in the equatorial plane. The
axisymmetric extensional creeping flow was obtained by specialization of the solution to the creeping

flow equation of Batchelor (1970) for a general linear rate of strain at infinity; see also Leal (1992) for
the final result.

The partial differential equation to be solved,

Pe Ur(r,O) Oc + = V2c - Pe Da: c
Or r

(6)

may be rewritten upon introducing the expansion (1) as

---_-( 1-3_t2)Pa( bt)+G(1") On(r) (3.) (aPo( _) -aP,,_i(_) )

I d(r2 den)n(n+l)cn(.r) - Da, ca(r) } =0r 2 dr dr r 2

(7)

in which,

5 -2 3 -4

G (/') = (1 -."-5).

(8)



In order to reduce this to a system of ordinary differential equations by utilizing the

orthogonality of the Pn(P), we must first reduce all the 0-dependent coefficients to Legendre

polynomials. To accomplish this we use both algebraic and differential recurrence relations for them

(Abramowitz and Stegun, 1965), the former repeatedly as required. Ultimately, the convection terms

may be written as

n,.O dr

(//+1)(2n+3)

-3 {F(t) dcadr

{ }(l)3 FCr) dcn nGCr) %(r)dr

(2n-1) -3 (2n-1) a(e) %(r) Po(g)

}{ (n+l)(n+2) pa,2(_t)= nG(r) ca(r) (2n+l) (2n+3)

(2n-l) (2n+l) +G(r) cn(r) -2(P)

O)

The remaining terms of the equation need not be rewritten. Upon utilizing the orthogonality of the

Pn(I.t) and solving for the second derivatives, we obtain for the general n (n , 0,1),

d2cu - + pe IF(r) den 3 ((k+1)24 f12 )dr2 dr (2n+l) (2n÷3) (2n-l)

n( n-1) (F ( r) den-2 )-3 (2n-l) (2n-3) dr (n-2) G(r) Cn_2(r)

-3
(n+l)(n+2) (F(r) dcn_2 )1(2n+3) (2n+5) --_- +(n+3) G(r) %,2(r)

2 dca n(n+l)
4- Co(r)÷ Da# %(r)

r. dr r 2

(I0)

In the computations and results, it is more informative to vary Pe and Da_ (called K in the program

and figures).
The boundary conditions on c(r,0) are

c(r,O) = 1
' (11)

c(r--*®,O) =0,

which imply

Co(t=l) = I,

ca(r=l) = O, n >I,

%(r----oo) =0, n _0.

(12)
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NUMERICALALGORITHM

Thealgorithmof PereymandLentini (1978) as codified now in the IMSL subroutine

DBVPFD was used. It is a robust program for solving two-point boundary value problems. In order to

solve the ordinary differential equation system represented by (10)-(12), we first must terminate the

infinite series (1) at N < **,and the spatial domain at r. < **. The former leads to a f'mite system of

second order equations for which c,(r) = 0 for n < 0, n > N. The latter leads to the modified boundary
conditions

c0(r=l) = 1

co(r=l) =0 , n >0

co(r=r,) =0 , n >0 .

(13)

The results for e_ (r;Pe,Dat) will obviously depend upon N and r.. The latter (r.) is a parameter that
can be varied in the program. The former fN) must be selected before the program can be run, but
once selected (as conservatively as possible), convergence of the series can be established. The other

crucial computational parameters in the subroutine are the initial and maximum number of mesh points
(NINIT, MXGRID).

Finally, the system of N+ 1 second order equations must be converted in the usual way to
a system of 2(N+I) first order equations in order to employ the IMSL subroutine:

Co(r)
cl(r)

c_:_ l ( r)

c_( r)

dco
-_-( r)
dcs
--_-( r)

dc__ l (r)
dr

dc_
--_--( r)

-"Ym(x)
-')Y2(x)

-'.v__r__ _(_)

dYl

- dr(x)

_ dY_cx )
dr

dY n÷ l

d.y _$ = I

= dr (x) "Y,v_,vs- i (x)

ay_s
- =_ (x) -*Y_r_ x)

(14)



RESULTS AND DISCUSSION

For a practicing engineer and for many engineering and other scientists and mathematicians,

the principal goal of such an investigation would be a relation between the average Sherwood number

(the dimensionless mass transfer coefficient) Sh and the physicochemical parameters, viz., Sh(Pe;Dax).

Of some practical interest is also the local Sherwood number, which for an axisymmetric convecting

velocity would be expressible as Sh(0;Pe,Dal), the integral of which, when carried out over the surface

of the sphere, yields the average Sherwood number Sh. The magnitude of the local Sherwood number
is the normal derivative of the concentration field c(r,0) at the sphere surface, a c/a r (r,0)1,-1 •

Although the concentration field c(r,0) in other approaches to the forced convective diffusion-reaction

problem would be the object of the numerical research, it generally receives short schrift as being of

little practical interest. In multiparticle systems, the extent of the concentration fields non-negligible
level for a single particle can for instance, be useful in assessing, or at least estimating, the minimum

interparticle distance at which concentration fields of neighboring particles would affect one another.
We start our discussion, neither with Sh(0;Pe,Da I) nor with c(0;Pe,Dai), but with the object of

our numerical study, the radial functions c_(r;Pe,Da_), denoted as c_(r;Pe,K). In Figure 2a,b for r. (=R

in the notation employed throughout the paper) = 10 and Pe=5, K=I we show the radial functions

c_(r), for n- 0,1,2,...,70 for a biaxiai flow. Consistent with the reflection symmetry across the equatorial

(0=,t/2) plane, only the even radial modes are nonvanishing. The radial functions decrease in

magnitude, and N=70 clearly produces a convergent series.

Biaxiai

When the radial functions are multiplied respectively by their corresponding Legendre

polynomials, the isocontour plot shown in the upper half of Figure 1 results. The biaxial velocity field

produces the thin(her) stagnation concentration boundary layer at the poles. The concentration wake

then imbeds the equatorial plane symmetrically. There are, to emphasize the point, neither momentum

boundary layers nor momentum wakes (Re << 1). At the same Pe, r., and N, an increase of K from l

to 2 reduces (Figure 3) the boundary layer a bit and the wake more, effects that are still more

pronounced for K-5 (Pe=5) in Figure 4. For K=10 (Pe=5), all of the isocontours (0.1-0.9 in increments
of 0.1) except for c-0.01 are spherically symmetric (Figure5), as far as is apparent to the naked eye

(and undoubtedly a boon to theoreticians).
For an increase of Pe to 50, the K=2 (Figure 6) is of course dissimilar to that for Pe,,5, but for

K=5,10 similar remarks apply to the Pe=50 isocontours: there is one nonspherical isocontour for K=5

and none at K=I0 (Plots not shown).
For a further increase to Pc=200 (Figure 7) the isocontours show a 2-d salient at K=I, which

has become almost spherically symmetric at K=2 (Figure 8). For K=5 and 10 (Plots not shown)

spherical symmetry reigns, the differences being solely the decreasing radii of the circles with

increasing K.
The isocontour plot for Pc-500 and K=0.5 (Figure 9) is similar to that for Pe=200 and K=I

(Figure 7).
Uniaxial

The area of stagnation concentration boundary layer for uniaxial extensional creeping flow is
centered on the stagnation velocity ring, the equator. The concentration wakes are two, stretching from

the poles (0=0,*t), qualitatively similar to the concentration wake on the downwind pole of a sphere in
a uniform streaming flow at infinity. Such observations are rendered more faithfully in Figure 10 for

Pe=5, K=5 than in words.
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An increase from K=5 to 10 for the same Peclet number (Pc=5) brings about expected

isocontours (Figure 11), as does an increase of Pe to 50 for K=5 (Figure 12) and for K=I0 (Figure
13), by which values spherical isocontoum result.

Local Sherwood Numbers

For fast reactions (Da_=K=5,10), spherical isocontours were observed. An increase in the

convection (i.e., in Pc) served to feed the reaction faster but did not further influence the spherical
symmetry of the isocontours, once a Pe was reached at which they were spherical. This is nowhere

more evident than for the biaxial flow in Figures 14a,b for K=5 and 10 respectively; Peu5, 50, 200,
500. There are slight local maxima at 0=0,n and a slight local minimum at 0=n/2. Increases in Pe

lead to dramatic increases in the leve___[iof mass transfer rates without however appreciably affecting
local values over the surface, relative to one another. The increase in Da_ from 5 to 10 increases the
level of order 10 % for each Pe shown.

Absent reaction, biaxial convective diffusion produces a local Sherwood number that is peaked
at 0=0,_ and troughed around 0=_/2. The clear minimum is reduced rapidly as the maxima increase
with K (Figure 15a, Pc=5; Figure 15b, Pc=50; Figure 15c, Pc=200; Figure 15d, Pe=500).

For a uniaxial flow the convective diffusion problem without reaction produces a pronounced
maximum at 0=_/2 and minima at 0=0,_, as expected (Figure 16a). Also as expected, the strong

maximum is reduced relative to the minima with increasingly fast reaction (Figure 16a), an effect
observed with higher Pe (Figure 16b,c).

Crossplots for K,,5 and 10 for the several values of Pe in Figures 17a,b, emphasizing the weak
0-dependence of Sh(0) for fast reactions.

Average Sherwood Number

Different velocity fields convect heat and mass differently, as is evident even for the two types

of axisymmetric extensional flows. Concentration isocontours, other than those for very high Da_, are
different for biaxial and uniaxial flows.

For Pc,f5, convective diffusion (Kffi0 in Tables 1,2) by uniaxial flow manifests a greater

average mass transfer coefficient than by biaxial flow. Indeed, strictly speaking, for any value of Pe
and K, Sh(Fei, Kj) _a > Sh(Fei, Kj) _ , as is evident from Tables 1 and 2.

Nonetheless, for PeffiS, K=I, Sl_. is greater than SI_. by only 0.07; for K=2, by only 0.03; for

K.-5, by only 0.005. For Per50 and Kffi5, I0, Sh_. > Sh_. only in the third decimal place, which also

holds for the same K's, at Pc.,200. For K=10, at Peffi500, they differ only in the fourth decimal place.
Thus, from this limited set of results, Sh is virtually identical for uniaxiai and biaxial flows for Kffi5,10

for Pc:,50. For smaller reaction rates and for smaller convection (smaller Pc), small but perceptible
differences will arise between biaxial and uniaxial creeping flows, with the latter being the larger of
the two.
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UNIAXlAL FLOW: HOMOGENEOUS REACTION
PE=50; K= 5, 10

n,,'

uJ 22
rn

Z

0
0
N 2o

w
..r

_J
<

O18
_.1

16 I I I ' I F : ] I '

20 40 60 80 100 120 140 160 180
THETA

46

FIGURE 16c
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FIGURE 17a

UNIAXIAL FLOW: HOMOGENEOUS REACTION
K=5; PE=5, 50, 200

3O
n-
LU
CO

D 25
Z

O
O
O
_ 2O
n-
U.I
I
ffl
_15

o
0
--J

10 J
L
|

5 ! , p : , , _ , I

0 20 40 60 80 100 120 140 160 180
THETA

8O
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UNIAXIAL FLOW: HOMOGENEOUS REACTION
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TABLE 1: Average Sherwood Numbers for Biaxial Flow

Pc K R Avg. SherwoodN NI NM NF :NE N TOL

5 0 lO

5 1 10

5 2 10

5 5 10

5 10 l0

50 5 5

50 10 5

200 5 5

200 lO 5

500 5 5

5OO I0 5

2.4222332546

3.4844020321

4.2826214867

6.0326632737

8.0806645862

16.8417150406

23.3676877824

32.6445658252

45.7258627584

51.0160617125

71.7138264523

60 600 166 142 70 IE-06

60 600 135 142 70 IE-06

60 600 135 142 70 IE-06

60 600 104 142 70 IE-06

60 600 101 142 70 1E-06

100 875 140 142 70 IE-06

100 875 130 142 70 IE-06

100 875 219 142 70 1E-06

100 875 235 142 70 1E-06
i

100 875 1425 142 70 IE-06

I00 875 202 142 70 IE-06

TABLE 2: Average Sherwood Numbers for Uniaxial Flow

Pe K R Avg. SherwoodN NI NM NF NE N TOL

5 0 I0

5 I I0

5 2 I0

5 5 I0

5 I0 I0

50 5 5

50 I0 5

200 5 5

200 I0 5

5O0 10 5

2.6345022231 60 600 141 142 70 IE-06

3.5533852471 60 600 178 142 70 1E-06

4.3116939874 60 600 189 142 70 IE-06

6.0374513084 60 600 154 142 70 IE-06

8.0814290608 60 600 141 142 70 IE-06

16.8450206823 100 875 309 142 70 IE-06

23.3680425224 100 875 243 142 70 IE-06

32.6462378512 100 875 527 142 70 IE-06

45.7260072732 100 875 353 142 70 1E-06

71.7138969816 100 875 417 142 70 IE-06

m Nui_O_ of iaitud ipid I_in_ i_ludine the _ (NH_TrT)

HM IvlLxinmm mambet of l_id poima allowed (MXGRID)

NF Numlxr of final ffid pouCat,i_l_]i_ the emtpoin_ (NFINAL)

NE Number of (ftn_t et'der ) diffc_nti_d _lmmom (NEQNS)

N Numb_ of temw in the eilleafuncbm ex_mmion

TOL Relative en_t _al_ol pro'mature"
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ABSTRACT

The paper presents the numerical solution of heat and mass transfer during cross-flow (orthogonal)
mixed convection. In this class of flow, a buoyancy-driven transport in the vertical direction and a forced

convective flow in the horizontal direction results in a three-dimensional boundary layer structure adjacent
to the plate. The rates of heat and mass transfer are determined by a combined influence of the two

transport processes. The equations for the conservation of mass, momentum, energy, and species
concentration were solved along with appropriate boundary conditions to determine the distributions of

velocity components, temperature, and concentration across the thickness of the boundary layer at

different locations on the plate. Results were expressed in dimensionless form using Reynolds number,
Richardson number for heat transfer, Richardson number for mass transfer, Prandtl number, and Schmidt

number as parameters. It was found that the transport is dominated by buoyancy at smaller vertical

locations and at larger distances away from the forced convection leading edge. Effects of forced

convection appeared to be very strong at smaller horizontal distances from the leading edge. The cross-
stream forced convection enhanced the rate of heat and mass transfer by a very significant amount.

INTRODUCTION

Heat and mass transfer under the combined influence of a vertical buoyant force and an externally-

imposed horizontal flow occurs frequently in nature and has several technological applications as well.

Some examples of such cross-flow mixed convection are: the cooling of electronic circuit boards by fans,
heat transfer from vertical walls in buildings, heat loss mechanisms from solar collectors, mass transfer

during a drying process, and wind-driven propagation of fire.

There have been a number of past studies devoted to the understanding of mixed convective heat

and mass transfer. These include aiding, opposing, and cross flow situations. Lin et al. (ref.1) have

studied the mixed convection problem of an isothermal horizontal plate moving in parallel or reversely
to a free stream. They concluded that the heat transfer rate increases significantly with increase in

buoyancy, and increase in the velocities of the plate and the free stream. Khouaja et al. (ref.2) studied

mixed convection in slender vertical cylinders for power law variation in surface heat flux. They found
that the local heat transfer rate increases with increasing Prandtl number, increasing curvature, and

increasing value of power law exponent. A vertical flat plate was simulated as a limiting form of the

cylinder and provided satisfactory results. Wickern (ref.3) studied mixed convection from an arbitrarily
inclined semi-infinite flat plate for different inclination angles and for different Prandtl numbers. He found

that for opposing buoyancy forces, singular as well as regular behavior can occur.

In a cross-flow situation, the transport is more complicated because of the three-dimensional nature

of the boundary layer flow. In an early study, Young and Yang (ref.4) used a perturbation analysis and
found that a weak cross-flow has very little effect on natural convection over a vertical flat surface.

Eichorn and Hasan (ref.5) as well as Plumb (ref.6) have obtained similarity solutions for Falkner-Skan

type three-dimensional mixed convection. But similarity exists only for certain power law surface

PRECEDING PAGE BLANK NOT FILMED
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temperature distributions. Evans and Plumb (refs. 7, 8) extended the box scheme developed by Keller and
Cebeci (ref.9) to three dimensions and obtained numerical solutions for mixed convection from an

isothermal surface in a cross-flow. Rahrnan and Carey (refs. 10,11) examined the transient behavior of

the flow that may precdde the final steady state configuration. They looked at heat transfer from a vertical

plate in a number of transient conditions. They found that under certain conditions, the local velocity and

temperature fields overshoot before reaching the final steady-state configuration.

The present study explored the process of combined heat and mass transfer during cross-flow
mixed convection. The three-dimensionai cross-flow boundary layer flow was analyzed when buoyancy-

driven flow and transport in the vertical direction was the same order of magnitude as the forced

convection in the horizontal direction. Equations governing the conservation of mass, momentum, energy,

and species concentration were solved numerically to predict velocity, temperature, and concentration
distribution across the boundary layer and the variation of heat and mass transfer rate over the plate. A

parametric study was performed to determine the effects of Reynolds, Richardson (Ri and Ri*), Prandfl,
and Schmidt numbers.

MATHEMATICAL MODEL

The schematic of the problem under consideration is shown in Figure 1. A vertical flat plate of

finite length and height is placed in an extensive horizontal fluid stream. The surface of the plate is
maintained at a constant temperature To and the concentration of the diffusing medium at the surface

remains constant at Co. The ambient fluid is at a constant temperature T. and has the diffusing species

with a constant concentration C.. It is assumed that T0>T, and CO>C.. The velocity of the fluid in

the free stream far away from the plate remains constant at w.. A three-dimensional boundary layer flow

develops adjacent to the plate due to the combined effects of the horizontal forced flow and buoyancy
force due to temperature and concentration differences acting in the vertical direction. The characteristics

of the mixed convective flow are determined by the relative magnitudes of the forced and buoyancy-driven
flows.

The equations describing the conservation of mass, momentum, energy, and concentration inside

the boundary layer for steady, incompressible, laminar flow, with constant fluid properties (Boussinesq

approximation for buoyancy) are given by:

Ou Ov aw=0
-_ +-J_+ az (II

uaU÷vaU+w : (r-r.)+@'(c-c.)
Ox Oy Oz Oxz

(2)

aw + aw + aw _ w
u-j vwp (3)

@T+ OT + @T_ aZT
9 (4)
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OC + OC +wOC_ D O2C
u-_-_ v.-_-; a--i- (5)

The boundary conditions are given by:

X = 0 : v = O, w= O, T= To, C = Co (6)

x-'** : v= O, w= w., T= T., C= C. (7)

y = 0 : v = O, w= w., T= T., C= C® (8)

z = 0 : v = O, w= w., T= T., C= C. (9)

It is convenient to define the following non-dimensional variables at this point.

T-T. c-c.
O- ; ,-

%-T. Co-C.

u v w
U- V= -_- , W= --

w. w. w.

x= x Z z= z
L' Y=L' L

Using the above non-dimensionalized variables, the governing equations (1-5) can be expressed as:

OU+OV+OW 0 (i0)

uOV+. Or+.. OV 1 @2V+RiO+Ri. _ (ii)
.._ v .y9 w -_-_- Re Ox 2

u_OW +- OW OW_ 1 _W (12)
v_ +W,oz Re OX 2
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(90+ _ + ao 1 _0
aZ Re. Pr OX 2

(13)

@___+va@__y+W@@_ZZ_ 1 _[ (14)U @X Re. Sc ax 2

And, the boundary conditions (6-10) are transformed to :

X = 0 : V= O, W = O, O = i, _; = 1 (15)

X-" ** : V = O, W = I, O = O, _r = 0 (16)

Y= 0 : V= O, W= I, O = O, III= 0
(17)

Z = 0 : V = O, W = i, O = O, _; = 0 (18)

The governing equations (10-14) contain the Reynolds number, Re, Prandtl number, Pr, Schmidt
number, Sc, Richardson number, Ri, and Richardson number for mass transfer Ri" as parameters. The

relative magnitude of these parameters determines the characteristics of the flow. The effects of each of

these parameters on the flow configuration has been studied during the course of the present investigation.
The parameters were varied over the following range. Re = 103, 117', and 10s; Pr = 0.7 and 7

(corresponding to air and water respectively ); Sc = 0.6 and 580 (nominally for water vapor-air system
and sodium chloride - water system ); Ri = 1, 10, and 100; and Ri'=l, I0 and 100.

COMPUTATIONAL PROCEDURE

The governing transport equations, along with the boundary conditions described in the previous
section were solved numerically using the PHOENICS computer program. A Cartesian grid structure

covering the entire boundary layer region was used for the computation. The distribution of cells in the

computation domain was determined from a series of test runs with different number of cells in the x, y,
and z directions. It was found that 60x20x20 cells are adequate for the present computation. The finite

volume equations were derived by using the principles of conservation of mass, momentum, energy, and

species concentration at each cell. The variables were stored in a staggered fashion where they made more

physical sense for cell conservation. For each cell, the velocity components were stored at downstream
boundaries, whereas all pressures and temperatures were stored at the cell center. The hybrid difference

scheme demonstrated by Patankar (ref. 12) was used to preserve the relative contribution of convection and

diffusion to a cell from its neighbor in terms of cell Peclet number. The discretized equations were solved

by using the SIMPLEST algorithm (ref.13). The convergence of the numerical solution was monitored

by spot checking of field values during the course of the computation and by calculating and monitoring
the sum of residuals for each equation. Iterations were continued until sum of residuals for each

computational cell dropped below 10 -7. All equations had to be solved simultaneously because of the

coupling of velocity, temperature, and concentration through the buoyancy terms.
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RESULTSANDDISCUSSION

Thenumericalsolutionproceduredescribedin thelastsectionwasused to compute the velocity

components, and temperature and concentration distributions for different, combinations of Reynolds
number, Richardson number (Ri and Ri*), Prandti number, and Schmidt number. These results were used

to predict Nusselt and Sherwood numbers which quantified the rates of heat and mass transfer. Figure
2 shows the variation of the vertical component of velocity across the thickness of the boundary layer for

a combination of Re = 103, Ri = 1, Ri" = 0, and Pr = 0.7. Physically, it corresponds to pure heat transfer

from an isothermal vertical plate to air. The plot shows the velocity profile at four different locations on

the plate. Of these four locations chosen, two were near the leading edge and the other two farther

downstream (looking at both natural convection and forced flow directions). These were chosen to observe

the increasing influence of the boundary layer growth. It is observed that, at all four locations, the vertical

component of velocity has a bell shaped structure typical for natural convection with zero velocity at the
wall as well as at the edge of the boundary layer. For any given value of Z (horizontal location), the

magnitude of V increases with increasing Y (vertical location). This is because of the growth of buoyancy-
induced boundary layer in the vertical direction of the plate. The effects of buoyancy becomes stronger

with increase in vertical height. For any given Y, there is a very significant increase of buoyant flow with
increase in the horizontal coordinate. The forced convection boundary layer develops in the horizontal

direction. The effects of forced flow remains strong near the near edge of this boundary layer. As the

fluid particles move downstream, their horizontal component of velocity decreases because of the viscous
resistance from the wall. With increase in horizontal location, the effects of forced convection become

weaker, and buoyancy becomes the more dominant transport mechanism.

Figure 3 shows the variation of horizontal component of velocity across the boundary layer. As

expected, the horizontal component of velocity increases monotonically from zero to the free stream value
with increase in X at locations on the plate. It may be noticed that at smaller values of Z, there is no

significant change of W-velocity profile with vertical distance. This is because buoyancy is relatively

weaker in that region. Further downstream in the horizontal direction, the magnitude of W-velocity
decreases with Y because of a significant increase in buoyancy induced flow. The continuity has to be

preserved at all locations of the flow. Therefore, a steeper variation of one velocity component results in
a corresponding variation in the other velocity component. The distribution of temperature across the

thickness of the boundary layer is demonstrated in Figure 4 for the same combination of parameters used

in figures 2 and 3. Analogous to a two-dimensional boundary layer flow (for either natural or forced

convection), the temperature decreases monotonically with X at all locations on the plate. The slope of
the temperature curve at the wall is proportional to the rate of heat transfer from the wall. It may be
noticed that heat transfer is larger near both forced and natural convection leading edges and increases as

the boundary layer increases in thickness. Comparing with figure 3, it can be noticed that the thickness
of the thermal boundary layer is somewhat larger because of the Prandtl number smaller than 1.

The effects of Reynolds and Prandtl number on the flow and heat transfer are demonstrated in

figures 5 and 6. Figure 5 shows the variation of the vertical component of velocity across the boundary

layer for a given plate location, for a number of combinations of Reynolds and Prandtl number. The

corresponding plots for temperature distribution are shown in figure 6. It can be noticed that with increase
in Reynolds number, the thickness of both velocity and thermal boundary layer decrease. The decrease

in boundary layer thickness causes a slight increase for the peak of the vertical velocity even though the

Richardson number is preserved constant. With increase in Reynolds number, the slope of the temperature
curve at the wall also increases. This indicates a larger rate of heat transfer. The increase of heat transfer

with fluid velocity is obviously expected. With increase of Prandtl number, both vertical component of

velocity and boundary layer thickness decrease. The temperature curve becomes steeper showing an
increase of heat transfer rate with Prandtl number.
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Theeffectsof the variation of Richardson number (Ri) is explored in figures 7 and 8. RiChardson

number indicates the ratio of buoyant force and the inertia due to forced convection. The usual definition

of Richardson number is modified in the present study with the plate aspect ratio to account for different

lengths and heights of the plate. For a given Reynolds number and aspect ratio, a higher Richardson

number (Ri) implies a higher Grashof number (Grx), which in turn means a stronger natural convection

component and smaller boundary layer thickness. This can be clearly seen in figure 7 where the vertical

component of velocity is plotted for a number of combinations of Reynolds and Prandtl number.

Comparing the peak values of V, it can be realized that a ten time increase in Ri results in more than 3
times increase in vertical velocity. Results for both Prandtl numbers confn'm the same trend, but a larger
Prandtl number results in a smaller boundary layer thickness and a smaller vertical velocity. In figure 8,

it can be noticed that the temperature curve becomes steeper and the rate of heat transfer at the wall

increases with increase in both Reynolds and Prandtl numbers.

The distribution of Nusselt number over the plate is demonstrated in figure 9, where the variation

of Nusselt number with the horizontal coordinate is plotted for two different vertical locations. Results for

both fluid systems (Pr--0.7 and 7) are shown in the figure. The Nnsselt number is calculated here with the

vertical height as the length scale. The plot therefore essentially demonstrates the variation of the actual
heat transfer coefficient. In a cross-flow situation, both vertical and horizontal distances are useful length

scales and can be used in the calculation of dimensionless parameters. The Nusselt number is maximum

near the vertical leading edge, drops down very rapidly as one proceeds along Z and finally reaches a

stable value at large values of Z. The magnitude of Nu for any given Reynolds number and vertical

location is significantly higher for an higher Prandtl number. This is because of the smaller boundary

layer thickness and steeper temperature profile at the wall. The effects of Reynolds number (strength of
the forced flow) on Nusselt number is shown in figure 10. It can be noticed that the increase of Nusselt

number with Reynolds number is very significant at all locations on the plate. Therefore, a reasonable

cross-flow may very significantly alter the fluid flow and heat transfer scenario in an otherwise natural
convection situation. Comparing with the magnitude of Nusselt number for pure natural convection flow,

it was noticed that an order of magnitude increase in heat transfer was noticed at smaller Z-locations. The
enhancement factor became smaller at larger values of horizontal coordinate.

Mass transfer from a vertical plate in the presence of a horizontal cross-flow was studied for two

specific fluid systems. These are: the evaporation of water from a porous vertical wall which involves
the diffusion of water vapor to ambient air; and the dissolution of sodium chloride into water. The Schmidt
number for these diffusion processes under normal atmospheric pressure and temperature are 0.6 and 580,

respectively. To illuminate the mass transfer process, the vertical wall containing the diffusing medium
is assumed to be at the same temperature as the free stream. In addition Soret and Dufor effects are

neglected. Therefore, Richardson number for heat transfer (Ri) is zero during these mass transfer

processes. The buoyant force is created due to concentration difference and the corresponding Richardson
number is labeled as Ri*.

The variation of the vertical fluid velocity and the concentration of water vapor into air are shown

in figures 11 and 12 for different locations of the plate. It is not surprising that the V distribution looks

very similar to that in figure 2 and concentration distribution looks similar to that of temperature

distribution presented in figure 3. This is because, in either case though the cause of the buoyancy force
is different, the resulting effect is almost the same. Also, we are considering the case of Ri*=l, which

means that the buoyancy forces are about the same order of magnitude of the forced flow. Hence, even

though the physics of the problem is totally different for heat transfer and for mass transfer,
mathematically they are very similar. For locations near the vertical leading edge (smaller Z), forced

convective flow predominates and there is not much change in the V or T profiles with Y. But as one

proceeds further downstream, the natural convective effects begin to show up and the magnitude of the

peak value of V increases. From figure 12, it can be seen that the concentration gradient is higher at
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locationsnearertheleadingedge,thusimplyingthattherateof masstransferis higherhere.
Theeffectsof Reynoldsnumberontheverticalvelocityandconcentrationprofilesforaparticular

locationin theplateis shownin figures13and14.A largerReynoldsnumberdecreasestheboundary
layerthicknessandincreasestheslopeof theconcentrationcurve.Therefore,therateof masstransfer
increases.Theeffectof Schmidtnumberis verysignificant.It significantlyenhancestherateof mass
transfer.Theverticalvelocityfor the dissolutionof NaCIinto wateris muchsmallerin magnitude
comparedto theverticalvelocityattainedduringdiffusionof watervaporintoair.Theverticalvelocity,
V increasesgreatlywith increasein Ri* (figure15).Thisis dueto thefactthatfor anygivenvaluesof
Reynoldsnumberandanyaspectratioof theplate,Ri" is directlyproportionalto GrH",whichcontrols
thebuoyancyforce.Increasein Ri* causesreductionof thethermalboundarylayerthicknessandresults
in steeperconcentrationprofiles,suggestingahighdiffusionrateof thespecies.Comparingthetwofluid
systems,therateof masstransferis largerfor Nacl-H20systemowingto muchsteeperconcentration
profileat thewall.

TheSherwoodnumber(Sh)variation along the Z direction is plotted in figure 17 for different Y-

locations for a fixed Re and Ri*. Results for both flow systems has been shown in this plot. Analogous
to heat transfer, the mass transfer rate is largest near the leading edge for forced convection, diminishes

monotonically with Z, and approaches a constant value at locations far away from the leading edge. The
Sherwood number is higher for higher values of Y and increases significantly with Sc, thus stressing the

importance of fluid properties in determining the mass transfer coefficient. The variation of Sh along the
Z-direction for different values of Re, for Sc=0.6 and Sc=580 is shown in figure 18. It can be seen that

increase in Reynolds number increases Sh significantly. This effect is more pronounced at locations near

the forced convective leading edge. Therefore, the presence of a cross-flow may very significantly
enhance the rate of mass transfer in practical diffusion processes.

CONCLUSIONS

The objective of the present analysis was to identify the relative importance of the free and forced

mode of transport at different locations over a vertical flat plate in cross-flow and also to determine the
influence of the different dimensionless parameters on the flow structure and on the rate of heat and mass

transfer. It was found that forced convection dominates at locations near the vertical leading edge and

natural convection attains importance at locations further downstream. The heat as well as mass transfer

coefficients are higher at the leading edge owing to smaller thermal boundary layer thickness and steeper
gradients of temperature and concentration. With increase in Reynolds number and/or Prandtl number,

the boundary layer thickness became smaller and both heat and mass transfer coefficient increased. A
larger Richardson number (Ri or Ri °) resulted in larger buoyancy-induced transport. The combined effects

of natural and forced convection resulted in much larger overall rate of heat and mass transfer.

A

C
D

g
G

GrH

Gr*H

NOMENCLATURE

Aspect ratio, ratio of the length of the plate to its height ( L/H )
Mass concentration

Mass diffusivity

Acceleration due to gravi W
Mass transfer coefficient

Grashof number for heat transfer, g_H 3 (Tw - T./v 2

Grashof number for mass transfer, g_'H 3 (Co - C®/v 2
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h

H

k

L
Nu

Pr

Re

Ri
Ri'

Sc

Sh

T

U

U

V

V

W

W

x

X

Y
Y

Z

Z

V

0

¥
Q

Heat transfer coefficient

Height of the plate ( in the y-direction )

Thermal conductivity

Length of the plate ( in the z-direction )
Nusselt number, hy/k
Prandtl number

Reynolds number, w.L/v

Richardson number for heat transfer, Gr e A3/Re 2
Richardson number for mass transfer, Gr,* A3/Re 2
Schmidt number

Sherwood number, Gy/QD

Temperature

Velocity component in the x-direction
Dimensionless velocity component in the x-direction, u/w.

Velocity component in the y-direction

Dimensionless velocity component in the y-direction, v/w.

Velocity component in the z-direction

Dimensionless velocity component in the z-direction, w/w.
Normal coordinate

Dimensionless normal coordinate, x/L
Vertical coordinate

Dimensionless vertical coordinate, y/L
Horizontal coordinate

Dimensionless horizontal coordinate, z/L

Greek Symbols

Thermal diffusivity

Coefficient of thermal expansion

Volume expansion coefficient for concentration

Kinematic viscosity

Dimensionless temperature, (T- T.) / (To - T.)
Dimensionless concentration, (C - C.) / (Co - C.)

Density

Subscripts

Plate-fluid interface

Free-stream condition

o Lin,
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Figure1.Schematicof the
physicalproblem
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Figure 3. Horizontal velocity profile at
different locations on the plate
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different Reynolds number
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SUMMARY

The paper presents a detailed theoretical analysis of the process of gas absorption to a thin liquid film

adjacent to a horizontal rotating disk. The film is formed by the impingement of a controlled liquid jet
at the center of the disk and subsequent radial spreading of liquid along the disk. The chemical reaction

between the gas and the liquid film can be expressed as a zero-order homogeneous reaction. The process

was modeled by establishing equations for the conservation of mass, momentum, and species concentration
and solving them analytically. A scaling analysis was used to determine dominant transport processes.

Appropriate boundary conditions were used to solve these equations to develop expressions for the local
concentration of gas across the thickness of the film and distributions of film height, bulk concentration,
and Sherwood number along the radius of the disk. The partial differential equation for species

concentration was solved using the separation of variables technique along with the Duhamel's theorem

and the final analytical solution was expressed using confluent hypergeometric functions. Tables for

eigenvalues and eigenfunctions are presented for a number of reaction rate constants. A parametric study
was performed using Reynolds number, Ekman number, and dimensionless reaction rate as parameters.

At all radial locations, Sherwood number increased with Reynolds number (flow rate) as well as Ekman

number (rate of rotation). The enhancement of mass transfer due to chemical reaction was found to be

small when compared to the case of no reaction (pure absorption), but the enhancement factor was very

significant when compared to pure absorption in a stagnant liquid film. The zero-order reaction processes
considered in the present investigation included the absorption of oxygen in aqueous alkaline solutions

of sodiumclithionite and rhodium complex catalyzed carbonylation of methanol. Present analytical results

were compared to previous theoretical results for limiting conditions, and were found to have very good

agreement.

INTRODUCTION

Mass transfer with chemical reactions into thin films has been the subject of many theoretical and

experimental investigations. Understanding the process of gas absorption into thin films and its effect on
the chemical kinetics of the associated reactions is very important in chemical process industries.

Absorption of oxygen into thin films is important in medical engineering. Wetted wall columns are being

extensively used in mass transfer studies. The present study presents a detailed theoretical analysis of gas

absorption to a thin liquid film adjacent to a horizontal rotating disk. This kind of absorption process
is useful in a microgravity environment where usual falling film columns cannot be established and the

rate of transport can be enhanced by the introduction of fluid acceleration by an alternative approach such
as rotation. In addition to its fundamental scientific contribution and possible application in space based

chemical processes, the results of this research will be useful for the design of a spacecraft thermal

management system using absorption heat pump.
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In the past, there has been a number of studies on mass transfer to a falling liquid film_ Olbrich

and Wild [ref. 1] studied the diffusion from the free surface into a liquid film in laminar flow over a

sphere, a cone and a cycloid of revolution. They used the Laplace transform technique to solve the

governing differential equations followed by the application of the residue theorem. Gas absorption with

zero-order reaction for a liquid moving in a plug flow was studied by Astarita and Marrucci [ref. 2] Riazi

and Faghri [ref. 3] analyzed the gas absorption in a laminar falling film with zero-order reactions. The

differential equations were solved by the method of separation of variables, and the subsequent solution

was given using an infinite series of hypergeometric functions. They also presented the enhancement

factor when compared to the absorption rates in a stagnant liquid film found from a simple penetration

model. A simplified form of the enhancement factor was derived for specific conditions.
The overall reaction rate in a gas-liquid reaction is controlled by the physical mass transfer rate

and/or by the chemical reaction rate. Two models are generally used to describe the transfer mechanism,

viz., the film model and the penetration model. The film model postulates a stagnant film at the surface

of the liquid next to the gas. While the rest of the liquid is kept uniform in composition, the gas diffuses

into the film by molecular diffusion alone. The penetration theory assumes that after some time the
interface is renewed by fresh liquid and fresh gas. The elements of gas and liquid leaving the interface
are more or less saturated with the absorbed component. Of the two theories, the film model is the

simplest and is applied most frequently. Landau [ref. 4] studied the simultaneous interphase mass transfer
and a zero-order reaction using the film model. He gave analytical solutions for three regimes of the

absorption process, viz., low rates of absorption when the reaction goes to completion in the film, higher
rates of absorption when it goes to completion in the bulk and, at still higher rates of absorption when it

does not go to completion. Van de Vusse [ref. 5] derived expressions for the overall reaction rate for mass
transfer with chemical reactions. He used both the film theory and the penetration theory. He showed that

at high transfer rates the overall reaction rate approaches the chemical reaction rate. The effect of chemical
reaction on the bulk-phase concentration was studied by Nagy and Ujhidy [ref. 6]. They gave a

mathematical model to calculate the bulk-phase concentrations in the entire finite reaction rate regime in
case of both irreversible and reversible reactions. Analyses of mass transfer in hemodialysers for laminar

blood flow and homogeneous dialysate was clone by Cooney, Kim and Davis [ref. 7]. The solutions were
obtained in terms of confluent hypergeometric functions. They also discussed the application of their

mathematical model to systems used in clinical practice.

Mass transfer to a thin film adjacent to a rotating disk surface was studied by Rahman and Faghri

[ref. 8]. They gave analytical and numerical solutions to the problem. The analytical solution was obtained

using the method of separation of variables and hypergeometric functions. Sherwood numbers and bulk
concentration were calculated for different values of Reynolds and Ekman numbers and then the results

were compared with that of the numerical finite difference solution. They found that significant
enhancement of absorption rate can be obtained when the angular velocity of the rotating disk is

increased. Their problem involved pure absorption with no chemical reaction.

Several experimental investigations have also been clone to study effect of chemical reactions on

mass transfer into a thin liquid film. Jhaveri and Sharma [ref. 91 studied the absorption of oxygen in

aqueous alkaline solution of sodium diothionite. The reaction was found to be first order with respect to
diothionite concentration below 0.08 g mol/l, and second order with respect to diothionite concentration

above 0.08 g mol/l. The reaction was found to be zero order with respect to oxygen for all other
diothionite concentrations. Roberts and Danckwerts [ref. 10] studied the kinetics of carbon dioxide

absorption in alkaline solutions. They devised a method to eliminate the "stagnant film" end effect on
wetted-wall columns. The catalytic effect of arsenite ions on the reaction between carbon dioxide and

water was measured. Autocatalytic oxidation of Cyclohexane was investigated by Suresh et al [ref. 11].

The behavior of the reaction was found to be complex arising from the fact that the reaction was

autocatalytic and the reaction was zero order in oxygen over the entire absorption range. Astarita [ref. 12]
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studiedtheabsorptionof carbon dioxide into hydroxide solutions and in carbonate- bicarbonate buffer

solutions. The absorption rates were measured for a packed tower column. The kinetics of the absorption

of Carbon dioxide in monoethanolamine solutions at short contact times was studied by Clarke [ref. 13].

The rates of absorption of carbon dioxide at contact times of 3 and 20 ms and at gas pressures of 1 and

0.1 arm. was measured. He observed that the heat of reaction influences the rate of absorption. The effect

of interracial turbulence during the absorption of carbon dioxide into monoethanolamine was studied by

Brian et al [ref. 14]. They discussed the discrepancies between the theoretical considerations and the

available experimental data. They stated that this could be due to the interracial turbulence driven by
surface tension gradients. They found that the use of actual physical mass transfer coefficient during the

reaction improves the agreement between the penetration theory model and experimental data. Hjortkjaer

and Jension [ref. 15] investigated the kinetics of the Rhodium complex catalyzed carbonylation of

methanol. The reaction was investigated at carbon mono-oxide pressures between 1 and 50 alan and in the

temperature range of 150 - 225 °C. The reaction was discerned to be zero-order with respect to the

reactants, and first order with respect to the catalyst and promoter. The activation energy was found to be

14.7 kcal/gmol.

Although a significant number of research has been done on mass transfer into thin liquid films
with simultaneous chemical reactions, especially with respect to falling liquid films, very few work has

been clone on mass transfer into thin liquid films adjacent to a rotating disk. The present study gives a

detailed theoretical analysis of gas absorption into a thin liquid film over a rotating disk in the presence

of a zero-order chemical reaction. A theoretical model is developed and the effects of Reynolds number,
Ekman number and dimensionless reaction rate are studied.

MATHEMATICAL MODEL

The flow of a thin film adjacent to a horizontal rotating disk is considered in the present study.

The system is schematically shown in Figure 1. The film is formed by the impingement of a controlled

liquid jet at the center of the disk. The disk rotates about its axis with a constant angular velocity to. The
liquid film enters the gas medium at a radial location r=rm. A coordinate system attached to the free

surface (Figure 1) is used for the analysis. The following assumptions are made to simplify the problem.
(1) v << u or w and 0/0y >> 0/0r. These assumptions are valid since the thickness of the film

is much smaller than the radius of the disk.

(2) For a very thin liquid layer there is no significant hydrostatic pressure variation. The pressure
everywhere in the film is equal to the ambient pressure.

(3) The gravitational body force is negligible when compared to the centrifugal force even for
a moderate rate of rotation.

(4) w << u and u=tor. These assumptions are valid only at a large rate of rotation, and become

more appropriate at a larger radii.
Under these assumptions, the average velocity at any radial location can be calculated in a closed

form and is given by

W=--(o2r62 (1)
3v

The conservation of mass at any radial location gives
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Q=2_rW6 (2)

From equation (1) and (2), the film thickness can be expressed as

(3)

The above assumptions simplify the differential equation describing the conservation of gas

concentration in the liquid stream. In the presence of a simultaneous zero-order chemical reaction

occurring in the liquid phase, this equation is described by

v dC D _C k
,_.= ___._- (4)

The appropriate boundary conditions to equation (4) are

r=r_: C=O (5)

z--O: C=C " (6)

z=6: 0C' =0 (7)
&

Equation (4) can be written in a dimensionless form as follows

where

X=B_[_W_I] (9)

and

B__ l___L_p ,yE; Sc-X
(192) t/3

(10)
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Correspondingboundaryconditionsaregivenby

X=O and O<Y<I: _=0 ., (11)

Y=O and X>O: _=1 (12)

Y=Y* and X>O: a_=O (13)
aY

where

Y*ffil when a <2

=_ when _>2

(14)

In equation (14), ct._2 corresponds to the case when the maximum depth of penetration is equal to the film
thickness.

022 corresponds to the case when the maximum depth of penetration is less then the film
thickness. In that situation, the boundary condition given by equation(13) should be changed to

Y=Y" and X>O: and v'e=O (15)
dY

Now tt can also be written as,

where

Hence, the equation (8) becomes

a fit, (16)
xc-e 

pfg_v _ (17)

(1 _y2)._X ¢9211/ ,p
aY 2

(18)

The present system [Equations (18), (11-15)] has non-homogeneity in the differential equation
which is a function of the variable X, and in the boundary condition which is a constant. The principle

of separation of variables can be used to solve the corresponding problem with the non-homogenity in the

differential equation being independent of the variable X. Then Duhamel's theorem [ref. 16] can be

applied to obtain the actual solution.
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Introducingtheparameterx in equation (18), the auxiliary problem can be taken as

(l_y2) t__ _ _ P (19)

and the associated boundary conditions being

Y--0 and X>0: ,=1 (20)

X=O and O<Y<I: ,=0 (21)

and, if ct_2

Y=Y* and X>O: -_----=0 (22)
dY

or, if ot_2

Y=Y" and X>O: a*=O and ,=0 (23)
aY

Equation (19) along with the boundary conditions (20-23) was solved using the method of

separation of variables, thus obtaining the solution to the auxiliary problem as

m

¢(X,Y,'r)ffi P-.-L-Y2- P-.-L-Y Y*+I-E Cn _'yYc'gp(-x2nX)

2¢Zr'B ,.,

The eigen values, L_ are given as roots of the following equation.

(24)

(1-_'Y'_)M (-_-'{'_'Y*') +Y'2_'(3-_')M (7-_" 53_"_"2'_'Y'2_)
(25)

The constant, Cn can be determined by using the orthogonal property of the eigen functions, and given

as
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- P Y2+ P--YY'-I/(I -y2)Nn(Y)dY

I

f(1-y2)N (r)dY
0

(26)

where, N,(y) are the eigen functions given by

Nn(Y)ffi_.yYexp(-X,Y2/2)M ['-'_,-_,_.nY J
(27)

and M(a,b,c) is the confluent hypergeometric functions with arguments a,b and c [ref. 17].

The solution to the present auxiliary problem is similar to that obtained by Riazi and Faghri [ref.

31 for gas absorption in a falling liquid film in the presence of a zero order chemical reaction.

The Duhamel's theorem relates the solution of the auxiliary problem to the original problem and

is given by

e3 ,. x

dXJ+-o
(28)

After performing the integration, we get the concentration profile as

x
(29)

where

1

o_-°tY2+etYY*-I)(I-y2)Nn(Y)dY
2 (30)An- 1

f(1-Y2)N2(r)dY
0

The first fifteen values of 2% and A_ are listed in Table 1. The eigen values _ were determined

from equation (25) by using the bisection method and the corresponding integration constants, A, were

obtained from equation (30). The numerical integration was performed using Simpson' rule. Up to 32

digits were retained for all mathematical calculations though we list only eight digits after the decimal in

table- 1. This was required to overcome truncation errors during the computation of confluent

hypergeometric functions which are periodic in nature.
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The Sherwood number for gas absorption can be written as

1 - fo_)dy

(31)

After substituting for ¥ from equation (29) into equation (31), the Sherwood number can
be written as

_ Y* +_"_ AneXp(- J_2nX)_,7

Sh "- n-I 1 (32)

6 2 ,.,

In order to get a better understanding of the change of absorption rate with the flow rate and the
rate of rotation, Sherwood number without the film thickness, Sh was also calculated.The Sherwood

number, Sh can be related to Sh" by the relation

{3,,:)
(33)

The influence of the chemical reaction can be evaluated by comparing the rate of gas absorption,
G to the rate of gas absorption, G. ° of an infinitely deep stagnant liquid with the same physical

properties and with no chemical reaction. The ratio, GIG. ° is known as the enhancement factor [ref. 3].
The the Enhancement Factor when compared to the case of physical absorption, E. can be written as

Y*gX +_ --An 2
.-1 _._4 (1-e-X_)

(34)

The influence in the chemical reaction can also be evaluated by comparing the absorption rate,

G with the absorption rate, Go, of the same flow system but in which the chemical reaction is absent. Thus

the Enhancement Factor when compared to the ease of no chemical reaction but the same flow system,

Eo is given by
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:5Y*c(X+ (1 -e -_'

Eo- (35)

,.1

RESULTS AND DISCUSSION

The mathematical model developed in the previous section was used to calculate the mass transfer

rates and enhancement factors for some specific flow rates and rates of rotation. The flow system that was

considered in the present investigation is shown in figure 1. The fluid enters the gas medium at a radial
location r=ru, and is dispersed along the radial direction. The gas is absorbed and reacts with the fluid in

zero-order simultaneously and the absorbed gas is transported downstream with the flow. It is assumed

that the mass of the gas absorbed is negligible compared to the mass of the liquid. The flow remains

laminar throughout the physical domain considered in the present investigation. The important
dimensionless parameters are: the radial location X, the normal coordinate Y, the concentration W, the

Reynolds number Re, the Ekman number E and the reaction parameter o_.

The thickness of the liquid film is given by equation (3). As can be seen from the equation, the
thickness decreases monotonically with the radius. The thickness depends on the fluid flow rate and the

rotational speed. At larger radii, the flow is driven by the centrifugal force. The effects of inertial force

are significant only at smaller radii. The present study did not consider the development region near the

center of the disk. For a small Ekman number (large rate of rotation), the flow is primarily driven by

centrifugal force even at small radial locations. The film height can greatly influence the rate of

absorption. Under a very fast reaction, a low diffusion rate, or when the thickness of the film is large,

the penetration depth remains smaller than the film thickness(u2.2) at the entire flow domain. Under a

slow reaction, a very thin film, or a high diffusion rate, the penetration depth becomes equal to the film
thickness (u._) after the film has travelled some distance downstream.

The analytical solutions for dimensionless concentration and Sherwood number (dimensionless
mass transfer rate) are given by equation (29) and equation (32), respectively.These equations represent

the solution as a series of confluent hypergeometric functions, and are valid for any given reaction rate.

The solution for the first fifteen sets of eigenvalues (_) and the coefficients (CO are presented in Table
1 for different values of o_. The eigen values were obtained as roots of equation (25). The bisection

method was used to calculate the eigenvalues. Simpson's rule was used to perform the numerical

integration with 5000 intervals. In all numerical computations, 32 digits were retained after the decimal

to accurately calculate the values of hypergeometric functions. The values in Table 1 were compared with

those presented by Riazi and Faghri [ref. 3] for gas absorption to a falling film with zero order chemical
reaction and Olbrich and Wild [ref. 11 and Ralunan and Faghri [ref. 101 for the case of u,.--0 (absorption

with no chemical reaction). The present results differed slightly from those of Riazi and Faghri [ref. 3].

The difference becomes larger at higher eigen values. It was found that the discrepancy is due to
truncation errors in the calculations of Riazi and Faghri [ref. 3] who used double precision arithmetic for

their calculations. The results in this paper appears to be more accurate as up to 32 significant digits were

used for the calculations and the eigen values and the integration coefficients agree exactly with that of

Olbrich and Wild[tel. 1] and Rahman and Faghri[ref. 10] for the limiting case of u,=0. The eigen values

calculated from the equation (25) are independent of ¢t when _ but it depends on o_ when u22 (since
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Y'=_](2/a)whentx._2). It may be noted that for any given flow rate and speed of rotation, the

dimensionless reaction parameter ct, varies with the radial location as it is dependent on the local film

thickness.
The concentration profile at different radial locations for a=0.1 and a=2 are shown in figures 2

and 3 respectively. In both these graphs, it can be seen that the concentration increases in the
downstream direction at all locations across the thickness of the film. As the liquid film moves

downstream, the gas diffuses in and reacts with the film. At values of a less then or equal to 2, the gas

can penetrate the entire film thickness. When a is larger then 2, the penetration can extend only through

a part of the film thickness. It can be seen in figure 2 that at a=0.1, the gas penetrates the entire film
thickness when X is larger than 0.05. At larger values of X, the concentration increases all across the film
thickness, until at about 0.7, the concentration profile reaches a fully-developed condition. The

concentration profile does not change as the film moves further downstream. This profile is shown as X=.o

in the plots. In figure 3, it can be noticed that at a=2, the gas penetrates only through the part of the film
thickness and part of the liquid remains pure. The penetration depth becomes larger and larger as the film
moves downstream, and in the fully developed condition, it just touches the solid wall. The fully-

developed concentration profile for different values of a is demonstrated in figure 4. It can be clearly seen

from the graph that the reaction goes to completion within a part of the film when a?_.2. As a increases,

the fully developed concentration decreases for any particular radial location.

Figures 5 and 6 shows the variation of Sherwood number (Sh and Sh') along the radius of the disk
for different values of Ekman number. In these plots, both Reynolds number and the chemical reaction

rate are preserved constant. In figure 5, it can be noticed that the Sherwood number decreases downsu'eam
monotonically. As the Ekman number becomes smaller, the Sh" also becomes smaller. This is due to the
fact that at smaller Ekman number (i.e. at larger rotational speed) the film thickness also becomes smaller.

To single out the variation of mass transfer rate with the rotational speed of the disk, Sh is plotted in

figure 6. As expected, the Sherwood number increases with a decrease in Ekman number as the actual
mass transfer coefficient increases with the increase in rotational speed. The effect of Reynolds number

on Sherwood number can be seen in figures 7 and 8. In these plots, the Ekman number and the chemical

reaction rate are kept constant. From figure 7 it can be seen that an increase in Reynolds number causes
an increase in Sh'. This is true, since an increase in the flow rate can cause an increase in the mass

transfer rate. Figure 8 shows the variation of the Sherwood number (Sh) with the radius at different

Reynolds number. It can be noticed that the Sherwood number, Sh decreases monotonically with the
radius. For flow over a rotating disk, at smaller radii the flow is dominated by the inertial force and at

larger radii, it is dominated by the centrifugal force. Figures 9 and 10 show the variation of the bulk
concentration with the radial location, _ at different values of Ekman and Reynolds numbers. As expected,

in both these plots, the bulk concentration increases with the radial location at all values of Reynolds and

Ekman numbers.
The effect of reaction rate is shown in figures 11 and 12. The figures show the variation of the

Sherwood number and the bulk concentration with the radius for two different chemical reactions. These

are the reaction of oxygen with the aqueous alkaline solution of sodium dithionlte (K=6.4x10 :) and the

carbonylation of methanol (K=l.42x106). Figure 11 shows the variation of Sherwood Number Sh" along
the radius for the two chemical reaction rates considered. The Sherwood number, Sh* decreases with an

increase in rate constant k for both the flow systems considered. When the rate constant is larger, an

increase in the mass transfer coefficient might be expected for a given set of fluid properties. But the

dimensionless parameter a also depends upon the diffusion rate, D and the solubility of the gas in the

liquid, C'. Thus for a given film thickness, the mass transfer coefficient depends upon the quantity
k/(C'D). Therefore, when two different gas liquid reactions (zero-order) are considered, it would be

appropriate to consider the variation of the parameters with respect to the ratio of the quantity k/C'D.

When this quantity is larger, the gas absorption rate increases. This is consistent with the trend seen in
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figure11.Thequalityk/C'D for thereactionof sodium dithionite with oxygen is 8.95x107 and for the

carbonylation reaction it is 5.5x10 7 m 2. Figure 12 shows the variation of bulk concentration with radius
for the two different reactions considered in the study. The bulk concentration shows an increase with an

increase in the reaction rate. '

The enhancement factors (equations 34 and 35) were calculated for different values of X and

different combinations of reaction reate, Reynolds number, and Ekman number. It was found that E. is

the maximum near the entrance and reduces rapidly with the radius. The larger enhancement near the

entrance may be attributed to the smaller concentration boundary layer thickness in that region.

CONCLUSIONS

An analytical solution for the process of gas absorption to a thin film liquid film adjacent to a

horizontal rotating disk in the presence of a zero order chemical reaction is presented. The analysis

yielded closed form solutions in terms of a series of confluent hypergeometric functions. It was found that

the gas can penetrate all across the thickness of the film only if the dimensionless reaction rate a is less

than or equal to 2. For 0>2, the penetration depth can be only a part of the film thickness. It was also
observed that the concentration profile attains a fully developed condition at approximately X=0.7. The
rate of mass transfer increased with flow rate as well as with the rate of rotation. The chemical reaction

influenced the rate of gas absorption at the free surface. The mass transfer coefficient increased with
increase in k/C'D. The enhancement factor was found to be very significant when compared to absorption

in a stagnant liquid film.

NOMENCLATURE

B

C

C"

C.
D

E

Eo

E.
G

Go

G. °

k

m

mo

M

P

Q
r

Re

Sc

Sh

integration coefficient for n th eigen value (equation 30)

constant defined by equation (10)
Concentration of dissolved gas in the liquid [kmol m3]
Concentration of the dissolved gas at the interface [kmol m 3 ]

integration coefficient for n th eigen value (equation 26)

liquid phase diffusion coefficient [m2s1]
Ekman number,v/mr:

enhancement factor for the case of no chemical reaction

enhancement factor for the case of infinitely deep stagnant liquid
gas absorption rate [kg m 2 s"1]

gas absorption rate when the chemical reaction is absent [kg m: s_]

gas absorption rate without chemical reaction in an infinitely

deep stagnant liquid [kg m2 s"_1
zero-order reaction rate constant [kmol m-3 s"_]

dimensionless gas absorption rate

dimensionless gas absorption rate when the chemical reaction is
absent

confluent hypergeometric function
constant defined by equation (17)
volumetric flow rate [m 3s_1

radial coordinate [m]

Reynolds number, WiS/v
Schimdt number, v/D

Sherwood number, [G(v2/g)m]/pD
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Sh°

U

v

w

W

X
Y

z

O{

G

0

V

P

tO

in

ave

b

Sherwood number in terms of the film height, GS/pD
velocity in the angular direction [m s _]

velocity in the normal direction [m s1]

velocity in the radial flow direction [m s _]
average velocity along the radius [m s_]
dimensionless coordinate in the radial direction

dimensionless coordinate normal to the plate, z/G

coordinate normal to the plate [m]

Greek symbols

dimenesionless reaction parameter, k52/C'D

film thickness [m]

angular coordinate [rad]

eigen value
kinematic viscosity [ms s_l

dimesionless radial coordinate, r/r_

density of the liquid [kg m3l
parameter introduced in the auxiliary problem

solution of the auxiliary problem given by equation (24)
dimensionless concentration, C/C"

angular velocity [rad s"_]

Subscripts

condition at entrance

average value across the film thickness
mixed-mean (bulk) condition
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TABLE 1. Eigen values and Integration Coefficients

No x_
C, 0.=3 Or=4

Ct--O a-_O.1 Or=2 7q C, _,_ C.

1 2.26311053 !.79238360 1.72977244 0.54016045 2.38906211 0.41660402 2.59139039 0.36164776

2 6.29768520 ;.02469014 1.02672555 1.06539830 6.74541597 0.93826498 7.42019229 0.87219849

3 10.30772681 0.79631238 0.79386970 0.74745885 11.11656887 0.72127416 12.28077919 0.72237188

4 14.31279359 0.67455957 0.67511830 0.68573409 15.49931414 0.63800582 17.15401771 0.64786122

5 18.31592741 0.59583217 0.59511046 0.58139800 19.88870854 0.57066555 22.03297228 0.51668786

6 22.31808871 0.53954469 0.53980138 0.56467864 24.28213765 0.52485522 26.91492866 0.51736060

7 26.31968463 0.49671455 0.49637764 0.48997642 28.67816743 0.48388371 31.79863869 0.42056847

8 30.32091973 0.46270665 0.46285379 0.46564935 33.07595966 0.45403568 36.68345574 0.44504888

9 34.32190893 0.43485365 0.43466002 0.43098101 37.47499588 0.41836349 41.56901374 0.39960741

10 38.32272219 0.41149648 0.41159178 0.41340251 41.87493997 0.40073456 46.45509083 0.35605761

11 42.32340476 0.39154207 0.39141699 0.38903440 46.27556533 0.36863628 51.34154512 0.37809093

12 46.32398727 0.37423651 0.37430322 0.37557063 50.67671399 0.36209288 56.22828181 0.31925983

13 50.32449129 0.35904110 0.35895337 0.35728658 55.07827279 0.33499816 61.11523525 0.34052013

14 54.32493248 0.34555884 0.34560810 0.34654405 59.48015860 0.33538518 66.00235857 0.31814302

15 58.32532250 9.33.349027 0.33342546 0.32106149 63.88230912 0.31361091 7088961745 0.28518091
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SUMMARY

An IBM Personal Computer (PC) version of the Groove Analysis Program (GAP) was developed

to predict the steady state heat transport capability of an axially grooved heat pipe for a specified groove
geometry and working fluid. In the model, the capillary limit is determined by the numerical solution
of the differential equation for momentum conservation with the appropriate boundary conditions. This
governing equation accounts for the hydrodynamic losses due to friction in liquid and vapor flows and
due to liquid/vapor shear interaction. Back-pumping in both O-g and 1-g is accounted for in the boundary
condition at the condenser end. Slug formation in O-g and puddle flow in 1-g are also considered in the
model. At the user's discretion, the code will perform the analysis for various fluid inventories

(undercharge, nominal charge, overcharge, or a fixed fluid charge) and heat pipe elevations. GAP will
also calculate the minimum required heat pipe wall thickness for pressure containment at design

temperatures that are greater than or lower than the critical temperature of the working fluid.
This paper discusses the theory behind the development of the GAP model. It also presents the

many useful and powerful capabilities of the model. Furthermore, a correlation of flight test performance
data and the predictions using GAP is presented and discussed.

NOMENCLATURE

A

g
K
N
P

Q
QL
R
Re

P.,

T,
WP

w,
X

"t

Cross-sectional area
Gravitational constant

Permeability

Number of grooves
Pressure
Axial heat flow

Heat transport capability at capillary limit
Meniscus radius

Reynolds number
Groove root radius
Groove root comer radius

Groove tip corner radius

Vapor core radius
Pseudo-land thickness

Wetted perimeter
Groove width
Axial location

Angle to define groove geometry in Figure 1

Angle to define groove geometry in Figure 1
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Groove land taper angle
Contact angle

Heat of vaporization

Dynamic Viscosity

Kinematic Viscosity

Groove aspect ratio (half groove width/groove depth)
Function defined in equation (5) or (6)

Density

Angular velocity
Surface tension

Subscripts

1

V

vl,

X

Liquid

Vapor

Vapor/Liquid
Axial direction

ACRONYMS

ATS

CRYOHP

GAP
HPP

NASA

PC

RPM

Applications Technology Satellite
Cryogenic Heat Pipe Experiment

Groove Analysis Program

Heat Pipe Performance Experiment

National Aeronautics and Space Administration

Personal Computer
Revolutions Per Minute

INTRODUCTION

In recent years, spacecraft size and power requirements have increased, along with a corresponding
demand for more efficient waste heat rejection. The design of heat pipe-based spacecraft thermal

management systems requires a clear understanding of the thermal performance and working fluid
behavior of heat pipes in microgravity. On Earth, the strong gravitational field dominates the capillary

forces developed in the heat pipe wick. However, in the absence of gravity, the surface tension forces

within the wick are the heat transport's limiting factor. One method of predicting 0-g performance is by
extrapolating ground test data, but the presence of a liquid puddle in the condenser can make this

technique unreliable. This is particularly true with axially grooved ammonia heat pipes at the high end
of their operating temperature range and with most cryogenic fluids because of their low surface tensions.

The principal microgravity application of heat pipe technology is cooling electronics packages in

spacecraft and satellites. Commercial telecommunication spacecraft alone are utilizing more than two

thousand heat pipes annually for high power thermal management. The majority of these pipes are

aluminum/ammonia axially grooved tubing because of their simplicity and high reliability. It has been
very apparent that there is a need to accurately predict the microgravity performance characteristics of

a heat pipe to minimize the penalties associated with over-design. One problem that often arises is how

to use ground test data to predict microgravity thermal performance of a heat pipe. In space, the heat
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pipescanalso be exposed to a wide range of temperatures, and the expansion and contraction of the

working fluid can lead to excess or insufficient fluid inventories. During a cold startup scenario, a heat

pipe containing the correct fluid charge for nominal operating temperatures may be undercharged due to

liquid contraction. Qne common method of preventing this condition is to overcharge the heat pipe by
5 percent or more. At higher operating temperatures this leads to excess fluid that could form a thick

film over the condenser wick, or a liquid slug, either of which will result in decreased heat rejection

efficiency and higher operating temperatures. Also, as a result of limited heat pipe performance flight

data, thermal systems engineers currently must specify heat pipes with large performance margins to

compensate for possible degradations and uncertainties in heat transport capacity, therein incurring
volume and weight penalties.

Therefore, a design tool is needed to assist the thermal engineers in designing an axially grooved

heat pipe for a particular space application. This design tool must be accurate in predicting the thermal

performance of a heat pipe at any operating condition and also be easy to use. This IBM PC version of

GAP was designed to accomplish both requirements.

MATHEMATICAL FORMULATION

An IBM PC version of the GAP model was developed to predict the steady state heat transport

capacity of an axially grooved heat pipe for a specified groove geometry and working fluid. An example

of the geometry applicable to GAP is the divergent groove shown in Figure 1. A full description of the
model is contained in the user's manual (Reference 1).
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Figure 1. Divergent Groove Geometry
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In themodel, the capillary limit of the heat pipe is determined by the numerical solution of the

differential equation for momentum conservation with the appropriate boundary conditions. This

governing equation accounts for the hydrodynamic losses due to friction in the liquid and vapor flows and

due to liquid/vapor shear interaction. Back-pumping which is the capillary force that develops at the

condenser end in both 1-g and 0-g is accounted for in the condenser boundary condition. Slug formation
in 0-g and puddle flow in 1-g are also considered in the model. At the user's discretion, the code will

perform the analysis for various heat pipe elevations and fluid inventories, including both undercharged
and overcharged conditions. GAP will also calculate the minimum heat pipe wall thickness required for

pressure containment at design temperatures that are greater than or lower than the critical temperature
of the working fluid.

The capillary pumping limit is the transport limit generally experienced in 0-g heat pipe operation.
Sonic and vapor limits are typically encountered in 1-g applications with very high axial heat fluxes or

when operating near the melting point. The viscous limit becomes important if the pipe is very long and

is operated at lower temperature range of the working fluid. The capillary limit occurs when the capillary
pumping head can no longer sustain the hydrodynamic losses. In the operation of an axial groove heat

pipe, as heat is applied to the evaporator and is removed from the condenser, fluid flows develop within
the heat pipe. The vapor flows to the condenser end and the liquid in the grooves is pumped back to the

evaporator. In addition to the viscous pressure drops due to the vapor and liquid flows, there is an

additional pressure drop due to shearing at the liquid/vapor interface. For steady state operation, the sum

of all these pressure drops and those of body forces must be balanced by the capillary pumping force
developed by the groove opening, i.e.

Ap=_t_.y = Ap_,_+ ApzJ + Apx,_l + :_ Ap=j_m_ (I)

This constitutes the basic hydrodynamic governing equation for an axially grooved heat pipe. A

differential form of this equation can be derived by making the following assumptions:

(1) One dimensional laminar liquid flows in the axial groove and one dimensional laminar or turbulent
vapor flow in the inner core of the heat pipe;

(2) The groove depth is small compared to its wicking height, thus the hydrostatic loss associated with
the groove depth is negligible;

(3) Identical grooves with uniform groove properties for each groove over the entire length; and
(4) Uniform heat transfer in the evaporator and condenser.

The governing equations are thus:

• Laminar vapor flow (Rev < 2000)

oCosO c dR

R 2 dr
= pgSinf_ + 8_ + _'"2--t I+ _= (2)
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Turbulentvaporflow (Rev> 2000)

R 2 dx- p_gSin_ + p ¢4_.7s1_ .zs + _KAtp t 1+ grx ----if--
(3)

where the groove aspect ratio ¢, defined as the ratio of half the groove width to the groove depth, can
be written as

(R_+Rt)Siny - Rt
¢: (4)

RcR,

and the parameter ¢,_which accounts for liquid/vapor shear (Reference 2) is defined as

• Laminar vapor flow

4(Ri-R) v At,z
ip_= " (5)

Rv vt A v

• Turbulent vapor flow

R_-R_ A_.z po.zs {O(x)_O.TS
" (6)

C z = 0.03279 R_ _ A 1"75 P vVl t-T)

The left hand side of equation (2) or (3) represents the capillary pumping. The right hand side represents

the following pressure losses:

(1)
(2)
(3)

The first term is the hydrostatic loss;

The second term is the viscous vapor loss; and
The third term is the liquid flow loss which combines both the viscous loss and the

liquid/vapor shear interaction. The magnitude of the shear loss relative to the viscous liquid

loss is ¢2¢/,/3. The factor 1/3 in this term is recommended in Reference 3 for grooves that

have groove depths larger than groove widths, which is usually the case for axially grooved
heat pipes.

Equations (2) and (3) are solved by using a fourth order Runge-Kutta integration method. The

variables include working fluid properties, axial groove geometries, and heat pipe dimensions. The
boundary conditions and heat distribution are also required to completely specify the problem. The

integration of expression (2) or (3) yields the local meniscus radius required to support the local pressure

drop in each groove. The integration process starts from the evaporator end with a minimum meniscus

radius specified as half the groove width and proceeds to the condenser end. This process is normally
repeated many times with the heat transport rate continuously updated until the boundary condition at the

condenser end is satisfied. The liquid flow analysis conducted in Reference 2 demonstrated that the

maximum transport is obtained when the meniscus radius at the upstream end of the evaporator is a

minimum. Therefore, the boundary condition at the evaporator end for both 0-g and 1-g environments
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for all fluid charge conditions is

@x=0 R = R,m. - We (7)
2

where Ru for the axial groove geometry is shown in Figure 1.

At the condenser end, e.g. x = L, the boundary condition depends on the fluid charge condition and

the gravitational environment. For nominal charge and overcharge, the meniscus radius is set to a

maximum value to obtain the highest capillary pumping in the grooves. In 0-g, the excess liquid will
form a slug in the vapor core at the condenser end. Two radii of curvature both equal to half the vapor

core diameter define the minimum energy condition at the slug's liquid/vapor interface. Mass continuity

between the liquid slug and the liquid in the grooves in turn dictates an equivalent groove radius in the

condenser. In the code, the meniscus radius at the condenser end is set at half the vapor core radius to
model this condition

R, (S)
ForO-g, @ x = L R = /_ - 2

In l-g, when there is excess liquid in the pipe, a puddle will form at the condenser end. Beyond the

puddle, if preferential drainage is neglected, only one radius of curvature exists in the groove. This
liquid/vapor interface extends from the tip of one fin to the tip of the adjacent fin and its maximum value

is equal to the vapor core radius, i.e.

For l-g, @ x = L R = 1_ = R_ (9)

For undercharge condition, the meniscus radius at the condenser end is incremented gradually from Rmm

up to _ until the specified fluid charge is found. Thus, depending on the amount of undercharge and

the gravitational environment, the actual meniscus radius at the condenser end will be between R_ and
the value shown in equation (8) or (9).

The program estimates the maximum transport using a closed form solution for liquid losses only.

It then uses an incremental heat load based on this value and solves the differential equation to determine

the axial variation of the meniscus. Once this is known, the corresponding liquid and vapor inventories

are calculated. Repeating this solution procedure will then yield the maximum transport that can be

obtained as a function of fluid inventory up to the nominal charge condition.

FEATURES IN GAP

The IBM PC version of this GAP code is a menu-driven computer program designed for user

friendliness and flexibility not only in the data input but also in the code operation and in the processing

of the output data. The general flow chart of the code is shown in Figure 2. The code is written in
standard FORTRAN 77 and assembly language. It is designed to operate with an IBM PC or compatible

system that employs an 80286, 80386, or 80486 microprocessor with an appropriate coprocessor. The

present code has been intended to be interactive and user-friendly. It can be installed into a PC in a few
minutes and with the interactive data input feature, the user can run the code immediately to get the

results. Other special features of the code include:
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• Multiple runs for various heat pipe elevations and over a wide range of temperatures are readily

achieved;

• A comprehensive data base that contains the properties of 24 heat pipe working fluids is included

with the code. A listing of these working fluids and their corresponding range of operating

temperatures are included in Table 1;

• For pressure containment, the minimum required heat pipe wall thickness can be determined for

specified factors of safety; and

• At the user's discretion, the desired output data is written to a plot file which can be imported

to most spreadsheet or graphic software programs for fast quality plotting.
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Figure 2. GAP General Flowchart
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Working Fluid

Table 1. Heat Pipe Working Fluids in GAP

Temperature Range (K)

Acetone 250 to 474

Ammonia 200 to 404

Argon 85 to 149

Benzene 270 to 559

Butane 260 to 349

Cesium 400 to 1499

Dowtherm-A 373 to 669

Dowtherm-E 283 to 609

Ethane I00 to 304

Working Fluid

Freon 21

Freon 113

Temperature Range (K)

213 to 449

293 to 368

Heptane 273 to 472

Lithium 500 to 2099

Mercury

Methane

280 to 1069

91 to 189

Methanol 273 to 502

Nitrogen 65 to 124

Oxygen 55 to 154

Potassium 400 to 1799Freon 11 293 to 412

Freon 13 163 to 292 Sodium 400 to 1499

Freon 14 130 to 221 Water 273 to 642

FLIGHT DATA CORRELATIONS

The GAP code was used to predict the heat transport capacity of the axially grooved heat pipes

employed in the Heat Pipe Performance (HPP) (References 4 and 5) and the Cryogenic Heat Pipe

(CRYOHP) (Reference 6) flight experiments. The results were obtained by running the code to predict

0-g performance for each pipe with a nominal charge at various operating temperatures. These results

were then correlated with the flight test data to assess the accuracy of the code. The following sections

discuss the GAP predicted performance and the associated correlations with flight data for these pipes.

HPP Freon 113/Aluminum Heat Pipe

This heat pipe utilizes a rectangular groove geometry with its measured groove geometry shown in

Table 2. The detail of the HPP experiment design is discussed in References 4 and 5. The GAP

predicted 0-g steady state heat transport capacity of the pipe as a function of the operating temperature

range of interest is shown in Figure 3. At 58"C, the pipe is expected to transport about 23 watts before

dry-out occurs. This power level is in excellent agreement with the actual 24 watts obtained in flight.

It should be noted that these pipes were charged for operation at 40*(2 and have a 4.9% overcharge at
58°C. This charge is based on the accounting for meniscus recession.

The prediction of the heat transport capacity of a heat pipe subjected to adverse spin was determined

in the following manner. First, the maximum transport under a no spin condition was obtained from

GAP. Then, this value was used in the following expression to determine the heat transport capacity of

a heat pipe under adverse spin as:

[1 1 P t % .,,/._, D2_]QL (QL) 
4 (; w _,%-,_,1] (10)t
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Table 2. HPP Freon ll3/Aluminum Heat Pipe Design Summary

Groove Cro_s Section Rectangular Form

Number of Grooves 40

Outer Diameter (inch, nun) 0.499, 12.675

Inner Diameter (inch, mm) 0.437, 1 I.I0

Vapor Core Diameter (inch, mm) 0.364, 9.246

Fin Tip Comer Radius (inch, nun) 0.00428, 0.1087

Groove Root Comer Radius (inch, ram) 0.00409. 0.1039

Pseudo-land Tip Thickness (inch, ram) 0.00638, 0.1621

Groove Land Taper Angle (radian) 0.047

Groove Width (inch, nun) 0.0143, 0.3635

Wetted Perimeter (1 Groove) (inch, ram) 0.0909, 2.308

Total Groove Area (inch2, mm2) 0.0222, 14.31

Evaporator Length (inch, ram) 4.0, 101.6

Transport Section Length (inch, mm) 0.0, 0.0

Condenser Length (inch, nun) 12.76, 324.1

3O

25

2O

.9
15

:z:

I_t_ o.@M_ P

!
x"

C , , , , i s _ , , I , w s , l , , , w I , , , , i , , w w

20 30 40 50 60 70 80 90 1O0

Temperature (C)

Do ,, 12.68 mm Di ,, 11.1 mm Dv ,, 9.246 mm 40 Grooves

Wg ,, 0.3635 mm WP ,= 2.308 mm Rt ,, 0.1087 mm Ag,= 14.31 mm"2

Figure 3. HPP Freon Heat Pipe O-g Transport Capability vs. Temperature
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where QL

(QL)m

.ol

o.

w,

= transport capacity of the heat pipe experiencing adverse spin

= maximum transport capacity under no spin condition

= density of the liquid phase

= angular velocity
ffi surface tension

ffi linear distance from the center of rotation to the end of the condenser section

-- linear distance from the center of rotation to the end of the evaporator section

= groove width

With this procedure, the maximum heat load for the pipe at 32°C versus adverse spin rate is computed.

The data indicates that at a spin rate of about 6 RPM, the pipe can transport a maximum power of 6

watts. This result is in good agreement with the flight data which showed that dry-out for the pipe
occurred between 6 and 8 RPM with 6 watts applied.

HPp Water/Cooer Heat Pipe

This heat pipe utilizes a rectangular groove geometry. Table 3 provides the groove measurement

of this pipe. The GAP code was used to predict the 0-g steady state heat transport capacity of the pipe

as a function of the operating temperature range as shown in Figure 4. Note that at 50°C, the curve

seems to have a discontinuity. This is the point at which the vapor flow in the pipe is predicted to

transition from a laminar to a turbulent flow regime. The pressure losses due to vapor flow and vapor-
liquid shear in turbulent flow are higher than those in laminar flow; and thus, the slope of the heat

transport curve decreases slightly. With the same procedure used for the freon heat pipe, the heat
transport capacity of this water heat pipe at 72'_ was predicted as a function of adverse spin and it is

shown in Figure 5. From this Figure, one would expect a pipe transporting about 40 watts to dry out

at about 10.4 RPM. This turns out to be the case in flight where the measured dry-outs were obtained
between I0 to 12 RPM.

Table 3. HPP Water�Copper Heat INpe Design Summary

Groove Cross Section
H

RectangularForm
|

Numberof Grooves 25

Outer Diameter (inch, ram) 0.497, 12.631
1

InnerDiameter (inch, nun) 0.454, 11.521

Vapor Core Diameter (inch, nun)

Fin Tip Comer Radius (inch, nun)

Groove Root Comer Radius (inch, nun) 0.01462, 0.3713

i_eudo-land Tip Thickness (inch, nun) 0.00391, 0.09934

Groove Land Taper Angle (radian) 0.08155

Groove Width (inch, ram) 0.0351, 0.8915

Wetted Perimeter (1 Groove) (inch, nun) 0.1092, 2.775

Total Groove Area (inchs. nun2) 0.0335, 21.622

EvaporatorLength(inch, nun)

TransportSection Length(inch, nun)

Condenser Length (inch,nun)

0.375, 9.535

0.00464,O.I178

4.0, 101.6
,i i

0.0, 0.0

12.'/6, 324.1
i

62



IOO0

800

600

-I- 400

f
200 f

J

o-i _
0 10 20 30

J
,,I

f

J

40 50 60 70
Temperature (C)

8O

Do- 12.63 mm Di = 11.52 mm Dv= 9.535 mm
Wg = 0.8915 mm WP = 2.775 mm Rt = 0.1178 mm

25 Grooves

Ag -- 21.62 mm ^ 2
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TRW Cryogenic Heat Pipe (CRYOHP)

This heat pipe has oxygen working fluid and employs a rectangular groove geometry with relatively

shallow grooves (-0.8 mm deep) as shown in Table 4. This design was intentionally degraded so that

its heat transport capacity could be tested within the limits of the CRYOHP's cooling capacity ( - 5 watts

at 80 K). The CRYOHP experiment design and component test results are discussed in Reference 7.

The 0-g steady state heat transport capacity of the heat pipe predicted by GAP is shown in Figure

6 with the flight and ground test data. Flight data points are the actual electrical heater power applied

to the evaporator. The GAP predictions include a 0.8 watt parasitic heat leak from the surrounding
environment to the heat pipe. This heat leak was determined from ground and flight data transients

(Reference 6). The GAP predictions are in good agreement with the flight test data. GAP correctly

predicted the fully dry-out heat load at 69 K and under-predicted the values at 92 K and 102 K by

approximately 0.5 watt. The applied power increments for the TRW pipe are 0.5 watt and therefore there

is up to a 0.5 watt uncertainty when full dry-out occurs.
Also shown in Figure 6 is the 1-g performance at 82 K that was extrapolated from the component

tilt test results presented in Reference 7. At this temperature, the pipe was predicted to be over-filled

as listed in Table 5. The nominal charge required at 82 K as predicted by GAP is 8.54 grams. If the

grooves were filled without any meniscus recession, the charge would increase by 1.05 grams or 12.2 %
above the nominal charge with recession. In addition to the amount associated with meniscus recession
and based on the actual 10.3 grams charge, there is an additional 0.71 gram or 8.4% of further

overcharge at 82 K. The O-g slug length at 82 K for this overcharge condition is 3.63 era. The GAP

predicted performance at 82 K for a l-g horizontal test condition was obtained with this overcharge (i.e.
1.76 grams excess) and is plotted in Figure 6. Note that in this 1-g analysis, the same 0.8 watt parasitic

heat leak to the pipe was assumed. This theoretical data point is only 0.3 watt lower than the

extrapolated ground-test data point.

Table 4. TRW CRYOHP Heat lffpe Design Summary

Fluid Charge (gr)

Groove CrossSection

Numberof Grooves 17

OuterDiameter(inch, mm) 0.442, 11.224

InnerDiameter(inch, mm) 0.349, 8.872

VaporCore Diameter(inch. ram) 0.2865, 7.277

Fin Tip Comer Radius(inch, ram) 0.004, 0.1016

Groove Root Comer Radius (inch, mm) 0.00508, 0.1291

Pseudo-landTip Thickness(inch, nun) 0.02887, 0.7334

Groove LandTaperAngle (radian) 0.1685

Groove Width(inch, mm) 0.0175, 0.445

WettedPerimeter(1 Groove)(inch. mm) 0.0822, 2.089

Total Groove Area (inch2, mm2) 0.0094, 6.065

EvaporatorLength(inch, mm) 6.0. 152.4

TransportSectionLength(inch, nun) 40.8. 1015.24

CondenserLength (inch, nun) 6.0, 152.4

10.3

RectangularForm
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"AS-FABRICATED" GROOVE DIMENSIONS FOR GAP PREDICTIONS:

Do = 11.22 mm D_ = 8.872 mm Dv = 7.277 mm 17 Grooves

W s = 0.445 mm WP = 2.089 mm P,, = 0.1016 ram A s = 6.065 mm 2

Figure 6. TRW CRYOHP Heat Pipe Transport Capability vs. Temperature

Table 5. TRW CRYOHP Heat Pipe Fluid Charge Conditions

Actual Charge = 10.3 gr

Operating
Temperature (K)

GAP Computed
Nominal Charge (gr)

60 8.93

70 8.71

80 8.58

Percentage Charge
(Actual/GAP Nominal)

115.34

118.23

120.11

90 8.40 122.62

100 8.29 124.24

110 8.45 121.89

120 9.05 113.86

130 10.16 101.36

140 12.17 84.61

18.06150 57.02
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Hughes Aircraft Cryogenic Heat Pipe (CRYOHP)

This heat pipe also utilizes oxygen with the conventional ATS rectangular groove geometry

(Reference 8). Design details of the heat pipe and the groove geometry obtained from a shadowgraph

measurement are listed in Table 6. The oxygen charge for this heat pipe is 33.7 grams.

The GAP predicted 0-g steady state transport capability of this heat pipe is shown in Figure 7 versus

operating temperature. Flight and thermal vacuum test data are also included in this figure. The GAP

predictions include a 1.1 watt uniform parasitic heat leak to the heat pipe from the surroundings

(Reference 6). In general, the flight data is in good agreement with the GAP prediction. A partial dry-

out is the best measure of a heat pipe's capillary transport limit and these data points correlate almost

exactly over the test temperature range of 100 to 140 K. The model tends to under-predict the dry-out

condition by almost 5 watts at 128 K. This data point was obtained under transient condition because

of inadequate cooling, and transient performance is not an accurate measure of the transport limit.

Also shown in Figure 7 is the 1-g performance at 85 K that was extrapolated from the component

tilt tests in Reference 8. At this temperature, the Hughes heat pipe was predicted to be slightly over-filled

by just 0. I gram. Fluid charge conditions at other temperatures were predicted by GAP and are listed

in Table 7. Again the performance of this heat pipe at 85 K for a 1-g horizontal position with a 1.14 watt

parasitic heat leak to the pipe was predicted and is included in Figure 7. This single GAP data point is

approximately 1.5 watts lower than the extrapolated ground-test data. The small difference is, however,

well within the accuracy of the groove measurements and the experimental error.

Table 6. Hughes Aircraft CRYOHP Heat Pipe Design Summary

Groove Cross Section

Number of Grooves

Outer Diameter (inch, nun)

Inner Diameter (inch, ram)

Vapor Core Diameter (inch, nun)

Fin Tip Comer Radius (inch, ram)

Groove Root Comer Radius (inch, mm)

Pseudo-land Tip Thickness (inch, ram)

Groove Land Taper Angle (radian)

Groove Width (inch, nun)

Wetted Perimeter (1 Groove) (inch. mm)

Total Groove Area (inch2, mm2)

Evaporator Length (inch, nun)

Transport Section Length (inch. ram)

Condenser Length (inch. mm)

Rectangular Form

27

0.627, 15.914

0.429, 10.897

0.334, 8.484

0.0064, 0.1623

0.00625, O.1588

0.00159, 0.0403

0.0546

0.0259, 0.658

0.1281, 3.253

0.036, 23.226

6.0, 152.4

42.8. 1065.2

6.0,152.4
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Figure 7. Hughes Aircraft CRYOHP Heat Pipe Transport Capability vs. Temperature

Table 7. Hughes Aircraft CRYOHP Heat Pipe Piuid Charge Conditions

Operating
Temperature (K)

Actual Charge = 33.7 gr

150

GAP Computed
Nominal Charge (gr)

Percentage Charge
(Actual/GAP Nominal)

36.66

60 35.69 94.42

70 34.78 96.89

80 33.79 99.73

90 32.99 102.15

I00 31.68 106.38

110 30.73 109.66

120 30.57 110.24

130 31.20 108.01

140 32.39 104.04

91.93
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CONCLUSIONS

An IBM PC model of GAP was developed to predict the steady state thermal performance of an

axially grooved heat pipe operating in 1-g or microgravity environment. The model is user-friendly and
easy to use. It has been shown to accurately predict the transport capability of axially grooved heat pipes.

For the HPP flight experiment, static dryout limits of the alurninum/freon pipes in microgravity were

obtained and are in excellent agreement with the analytical predictions by the model. The transport limits

of the freon and water pipes under adverse spin also correlate well with the predictions by the GAP

model. For further verification, the computer model was applied to predict the transport limits of two
aluminum/oxygen pipes flown in the CRYOHP experiment. These predictions are also in excellent

agreement with the test data over a wide range of operating temperatures.

In support of the on-going Heat Pipe Performance Reflight (HPP-2) project and with the

recommendations by several users, the current GAP model is being upgraded to accommodate the actual

boundary conditions of an axially grooved heat pipe utilized in most applications. The following features

have been planned for this new version:

• Boiling limit will be included in the calculation of transport limits. Heat diffusion in the heat

pipe wall will be accounted for in this calculation. Therefore, thermal conductivity of the heat

pipe wall is an important parameter and will be correlated with the evaporator temperature;

• Asymmetric heating and cooling of the evaporator and condenser, respectively, will be considered
in the computation of maximum heat transport capability. In most practical applications, the heat

pipe is embedded inside a panel, which results in non-uniform heating or cooling of the

evaporator or condenser, respectively. In these eases, the heat pipe exhibit lower heat transport

capability because of local dry-out in the grooves; and
• Multiple sections of evaporator, transport, and condenser will also be included in the model.

This feature is critical to account for distributed heat loads along a heat pipe in many

applications.
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ABSTRACT

/

The Systems Improved Numerical Differencing Analyzer and Fluid Integrator
(SINDA/FLUINT) code has often bean used to determine the transient and steady-state response
of various thermal and fluidflow networks. While this code is an often used design and analysis tool,
the validation of this program has been limitedto a few simple studies.

For the current study, the SINDA/FLUINT code was compared to four different analytical
solutions. The thermal analyzer portionof the code (conduction and radiative heat transfer, SINDA
portion) was first compared to two separate solutions. The firstcomparison examined a semi-infinite
slab with a periodic surface temperature boundary condition. Next, a small, uniform temperature
object (lumped capacitance) was allowed to radiate to a fixed temperature sink. The fluid portion of
the code (FLUINT) was also compared to two different analytical solutions. The first study examined
a tank filling process by an ideal gas in which there is both control volume work and heat transfer.
The final comparison considered the flow in a pipe joining two infinite reservoirs of pressure. The
results of all these studies showed that for the situations examined here, the SINDA/FLUINT code
was able to match the results of the analytical solutions.

INTRODUCTION

The Systems Improved Numerical Differencing Analyzer and Fluid Integrator
(SINDA/FLUINT) program has often been used to determine the transient hydrodynamic and
thermal response of various thermal and fluid networks. For example, the Space Station Freedom's
(SSF) Active Thermal Control System (ATCS) [1] and aidock [2], the Space Shuttle's ATCS [3], and
the SSF's Lunar Transport Vehicle Hangar [4] have all bean analyzed using this code. While this
code has provided important results in the design and analysis of these and other space related
hardware, the validation of this program has been limited.

The validation of any numerical code is important, since once a code has been verified for
several test cases, a user will have ¢onfidance that the code can accurately predict the physical
processes of other, more complex problems. In general, there are three main verification methods.
The first method compares the predicted results with those of a previously validated code [5]. The
second method uses experimental data to verify the model's predictions [6]. Finally, the predicted
results can be compared to those of a closed form analytical solution [7].

To date, the SINDNFLUINT code has been validated with three simple closed form
solutions [8,9,10] and one relatively complex experimental comparison [11]. The three closed form
solutions considered were the transient conduction in a semi-infinite slab [8], the filling and
decompression of a rigid, adiabatic tank with an ideal gas [9], and the transient heat transfer
associated with a single phase fluid flowing in a duct [10]. The experimental comparison examined
the combined radiative, conductive, and convective heat rejection process associated with the
operation of the Space Shuttle's ATCS during orbital conditions [11]. For all the tests cases
considered, the predictions of the SINDA/FLUINT code were able to match the results of either the
closed form solutions or the experimental data; however, the program has yet to be validated for
more complex situations such as transient radiation, conduction or fluid flow phenomenon.

This paper details a validation study of the SINDA/FLUINT program for several simple
situations. The code was validated by comparing its results with those of several closed form
analytical solutions. The SINDA portion of the code was compared to two different analytical
solutions, while the FLUINT portion of the code was also validated with two separate analytical
solutions. The results of these studies showed that for the situations examined here, the code was
able to accurately predict the heat transfer and fluid flow processes.
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HEAT TRANSFER IN A SEMI-INFINITE SOLID

The SINDA portionof the code was first validated usingthe classical dosed form solution for
conduction heat transfer in a semi-infinite solid. For this test case, a periodic surface temperature
boundary condition was considered. A schematic of this system and its associated boundary
condition is shown in F'Kjure 1.

OO

T,u.=, = f(_)

X
v

Figure I Schematic of a Semi-lnfinite Solid.

The heat conduction in a semi-infinite solid, with no internal generation and constant
therrnophysical properties, is governed by the following differential equation,

1aT
o_X2 - (xo_: (1)

where the variables T, x, (x, and _ are the temperature, distance, thermal diffusivity, and time,
respectively. To reduoe the complexity of the solution process, the temperature is replaced by a
new variable, e, which is defined as

e=T-Ti (2)

where the subscript i denotes the initial condition. The new governing equation and the boundary
conditions for this problem am

o_x2 - o.o% (3)

e(x,o)=o (4)

e(-,,O=o (5)

e(o,z)=eoco=_ (6)

where eo and (o are the amplitude and frequency, respectively. To obtain a solution for equation
(3), the separation of variables method must be used and for brevity will not be presented here. A
detailed discussion of this solution procedure can be found in Reference 12. The solution to
equation (3) with the appropriate boundary conditions is

O(x,tq e.(Cd2oO1/2xco_a},¢ . ( (o _ 1/2 "1So = _) x.I (7)
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It is importantto notethatequation(7)is only valid for large values of time since there is a
discontinuityat the initial conditions. In other words, equation (7) cannot accurately predict transient
effects during the first increase of the solid's outer surface.

Once the analytical solution had been obtained for conduction in a semi-infinite solid, a
SINDA model was built for the comparison study. A schematic of this SINDA model is shown in
Figure 2. Here, a series of nodes with a height and depth of unity are placed together. The
lengthwise spacing and thermophysical properties are input parameters and chosen in such a way
that the computational process is simplified.

@O@

I
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I
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I

I

_X

Figure 2 Schematic of the SINDA model.

Figure 3 shows the comparison between the results of the SINDA model and those of the
analytical solution at different depths into the semi-infinite slab. As anticipated, the predictions
show an exponential decay in the oscillating temperature as the depth into the solid increases, in
addition, the predictions also show a phase shift in the oscillating temperatures and is associated
with the time it takes the heat to be conducted into the solid. As is evident, for the parameters
examined here, the predictions are nearly identical to those of the analytical solution. The greatest
temperature difference between the results of the two solutions is less than 1.25 °F. Other
conditions were also examined and a similarerror was noted.

COOLING BY RADIATIVE HEAT TRANSFER

The SINDA portion of the code was next validated using a closed form solution of a simple
radiative cooling process in which a warm object cools by thermal radiationto a cold sink. To simplify
the analysis, the lumped ual:mCitance method was employed and the object radiated to one source.
In other words, the entire solid was at a uniform temperature, one cold sink was available and there
was no reflected radiation. To further simplify the analysis, the radiating source was taken to be
diffusive. Applying these assumptions, the heat loss, Q, at an instant in time is given by

Q = eA o [I"4- T4sink] (e)

where s is the emissivity, A is the surface area, o is the Stefan-Boltzmann constant, T is the object's
lumped temperature, and Tsink is the radiative sink temperature. Rewriting equation (8) for
transient conditions and usingthe lumped capacitance assumption yields

aT
-p V Cp _--= O =_A 0 [T4- T4=invJ (9)
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where the new variables p, V, Cp, and _ represent the density, volume, the specific heat and time,
respectively. Rearranging and integrating equation (9) yields,

T=Tf

fT °_T eAo ].o__T = i T4 " T4sink = p V Cp 0
(10)

where Ti and Tf are the initial and final temperatures, respectively. Carrying out the integration on
equation (10), yields equation (11)

pVCoI"l__.___,J(Tf + Tsink)/(Tf - Tsink)_ 1 Tf tan" 1 (11)
¢ = F..Aa 1.4T3sink "_.(Ti + Tsink)/(Ti Tsink)J + an'l-" ' 2T3sink Tsink " Tsink

Equation (11) reveals that for a given initial temperature, the final temperature is govemed
by the time, _, the sink temperature, Tsink, and the term, pVCp/zAo, (capacitance divided by
radiative conductance). These terms were varied during the verification process. For the present
study, the sink temperature was held at either -100 °F, -200 °F or -400 °F, while the capacitance-
conductance ratio was set at 0.25, 0.5, 1.0 and 4.0. For each simulation, the initial temperature was
held at 70 °F and the object was allowed to cool for 10 hours.

The results from both the SINDA model and the analytical solution for all the above
conditions are shown in Rgure 4. As expected, the cooling process follows a typical exponential
decay, and the higher capacitance (or lower radiative conductance) objects cool more slowly. As is
evident, the SINDA generated results are in good agreement with those of the analytical solution,
since the predicted results are nearly identical to those of the analytical solution. The greatest
temperature difference between the results of the two solutions is less than 1.5 °F, which
corresponds to an error based on absolute temperature of less than 0.5%.

FLOW BETWEEN TWO INFINITE RESERVIORS OF PRESSURE

When two infinite reservoirs of different pressure are connected by a circular duct, such as
those shown in Rgure 5, the flow rate between the two, neglecting any entrance effects, is related
by the following expression,

LV2
'_P = P f D'2" (12)

where P is the pressure, p is the density of the working fluid, f is the friction factor, L is the length of
the duct, D is the diameter of the duct, and V is the velocity of the fluid.

I- -I
Rgure 5 Schematic of the System.
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Figure 4 Predicted Temperature Response for Various Capacitance-Conductance Ratios for
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Thevelocityofthefluidisrelatedtothemassflowrateby

V=rn/pA

wherem is the mass flow rate and A is the cross sectional area of the duct.
given by

A = _D2"/4

Substituting equations (13) and (14) into equation (12) and rearranging yields

8fm2L
&P = p_,,2DS

(13)

The area of the duct is

(14)

(15)

Solving for the friction factor gives

&Pp_.2D5
f= 8m2L (16)

For laminarflow the frictionfactor is given by

f = 64/Re

where Re is the Reynolds number which is given by

(17)

Re= vO
v (is)

where v is the kinematic viscosity. For turbulent flow the friction factor is a function of the Reynolds
number and the wall roughness ratio (e/D). The value of turbulent friction factors must be
determined experimentally and can be found on the Moody chart [13]. Reviewing equations (12)
through (16) shows that for a given fluid if the pressure difference, pipe diameter and length are
fixed, the velocity can be determined, directly for laminar flow and itemtively for turbulent flow. As
such, any numerical code that is developed correctly should be able to accurately predict fluid
velocities when the other parameters are fixed.

For the system shown in Figure 5, a simple FLUINT model was developed. The duct was
represented by the TUBE option so that internal pipe friction would be included in the model. The
pressure source and sink were represented by plenums (PLEN in FLUINT) which maintained a
constant pressure at the ends of the TUBE. A scherru_c of this FLUINT model is shown in Figure 6.

For the current study, the pressures of the PLENs, and the pipe length and diameter of the
TUBE are fixed. The model is then run in a steady-state mode until a converged solution is
obtained. Using this flow rate, the friction factor and Reynolds number were calculated (Equation
(16) and (18)) and compared to the analytical solutions. If the FLUINT code is properly developed,
the predictions should match the analytical solution or the Moody chart values.

PLEN
100

TUBE

300

PLEN
200

Figure 6 Schematic of the FLUINT Model.
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The model was run over Reynolds numbers ranging from 1 to 106 for four different values
of e/D and the predicted friction factors can be found in Figures 7 and 8. When laminar flow was
considered (Figure 7), the friction factor was found to be independent of the wall roughness and a
linear function of the Reynolds number. For this situation, the predicted FLUINT results are nearly
identical (< 0.1%)to those of the analytical solution.

When the flow is turbulent (Re > 2300), the friction in the pipe is a function of the both the
Reynolds number and the wall roughness. The greater the wall roughness, the great the friction
factor. The predicted friction factors in the turbulent regime for various wall roughness ratios can be
found in Figure 8. As is evident, the predicted friction factors agree with those taken from the
Moody chart and also shows the dependence of the friction factor upon wall roughness after the
laminar regime.

TANK FILLING WITH HEAT TRANSFER AND CONTROL VOLUME
WORK

Development of the Analytical Solution

Many thermodynamic processes involve unsteady flow and are difficultto analyze; however,
several processes, such as the filling of a closed container, can be approximated by a simplified
model. These types of problems are known as uniform-state, uniform-flow (USUF) processes. The
basic assumptions for this flow condition are as follows:

1) The thermodynamic state of the mass within the control volume may
change with time, but at any instant of time the state is uniform throughout
the entire control volume.

2) The thermodynamic state of the mass entedng the control volume is
constant with time.

min

Figure 9 Schematic of the System.

Using these assumptions and Figure 9 as a guide, the first law [14] can be simplified for a
tank filling scenario with heat transfer and control volume work. W'dhno velocity or gravity potential
terms, the first law for thistank fillingprocess is,

minhin= m2u2 - mlUl + Wcv + Qcv (19)

where m is the mass, h is the enthalpy, u is the internal energy, Wcv is the total control volume work,
and Qcv is the total heat trar,_er. The subscripts in, 2, and 1 denote the inlet, final and initial states,
respectively. From the continuity equation, the following relationship can also be developed.

min= rn2- ml (20)
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Substitutingequation(20) intoequation(19), replacingtheenthalpywithCpTandthe intemal
energy with CvT (the assumption of constant specific heats) yields

(m2 - ml)CpTin = m2CvT2 - mlCvT1 + Wcv + Qcv (21)

where Cp, Cv and T are the constant pressure specific heat, the constant volume specific heat and
temperature, respectively. Incorporating the ideal gas law (PV=RT) into equation (21) gives

P2V2
= RT2 CvT2"RT CvTl+Wcv+Qcv (22)

where P is the pressure, V is the volume, and R is the specific gas constant. Rearranging equation
(22) produces

P1Vl_p -r. P1V1 W_R +-- (23)
" = P2" v2 Cv* v2 v2

Dividing by the constant volume specific heat, Cv, and defining a new variable

VI 1

V2 - Vr (24)

equation (5) becomes,

('P..i?,. P1 "_kTin=('p2 PI_ W_R Q_R
t'r2 T',VrJ L " CvV2* c,v2 (is)

where k is the ratio of the specific heats. Rearranging equation (7) gives

P2 P2Vr- Pl I=1 WgV R QqY R
T2 = kTinVr +T1Vr + kTinCvV2 + kTinCvV2 (26)

Solving for the final temperature gives,

T2= P;_
Wcv R (27)P2Vr" P1 I=1 Qcv R "_

kTinVr + T1Vr + kTinCvV2 + kTinCvV2 )

Further simplificationyields,

T2 - kP2T1TinVr (28)

((P2Vr - P1)T1 +kP1Tin+ Wq_vvRT1 Q_YCvv2RT,)

Reviewing equation (28) shows that when work or heat leaves the control volume, the final
temperature will be reduced compared to a system in which these quantities are absent. It is also
important to note that in the absence of work and heat transfer, equation (28) reduces to a common
equation that is used to estimate final temperatures in rigid adiabatic containers [14].

In writing equation (28) it is assumed that the total work, Wcv, that occurs between the initial
(1) and final (2) states is known or can be determined. In general, the work term is not constant and
redes with both system pressure and volume. From thermodynamic relationships [14], the total
control volume work is defined as
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2

Wcv= f[PdV
(29)

Typically,volumeisrelatedtothepressurebyanarbitraryfunction.

V=f(P)

Similarly the pressure is related to the volume by the inverse function

P=f-I(V)

(3o)

(31)

Replacing the pressure term in equation (29) with equation (31) gives

2

Wcv=_f'l(V) dV (32)

For the present study, the function, f(P), was chosen so that the integral could easily be
evaluated. The manipulation of the SINDA/FLUINT code to include control volume work will be
discussed shortly in an upcoming section.

Development of the SINDA Model

Figure 10 shows a schematic of the FLUINT model that was used to validate the code.
Here, a TANK is connected to a PLEN (PLENum) by an MFRSET (Mass Flow Rate SET). By using
the TANK option, the first assumption for USUF processes (uniform state within the control volume)
is met. The use of the PLEN ensures that the second USUF assumption of constant inlet
properties is also maintained. To ensure that the working fluid is an ideal gas, an 8000 series fluid,
using nitrogen as the woddng fluid, was developed and employed.

TANK

MFRSET

PLEN

Figure 10 Schematic of the FLUINT Model.

While the SINDA/FLUINT program does not directly calculate (include) work terms for
expending (or contracting) control volumes, the code does calculate the thermal and hydraulic
response of compliant(soft)TANKs. In the code, the compliance is defined as

ldV
COMP= _._-_ (33)

Therefore, if there is a function relating pressure and volume, an expanding control volume can be
included in the FLUINT model, and by using equations (29) through (32), the control volume work
can then be determined for the analytical solution.

Before the results are examined, it is important to first review the analytical solution.
Equation (28) has been derived from a basic thermodynamic equation which was integrated over
time. While the FLUINT code uses a rate based thermodynamic equation, the code integrates this
equation over small discretized time intervals and the starting conditions at one time step are taken
from the final conditions of the previous time step. This procedure employed by the R.UINT is the
numerical equivalent of an integration. Since FLUINT has been developed using rate based
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equationsand the analytical solution uses overall heat transfer, one of the solution methods must
be modified. To modify the heat transfer terms so that they can be included in the analytical
solution, all that is required is that the FLUINT heat transfer term (QDOT in FLUINT) be mufliplied by
the total run time (TIMEN) and thus total heat transfer.

Results

The comparison study was conducted in several steps. First, the model considered
situations where only heat transfer or the volume changed. The model was then run for situations in
which there was both simultaneous heat transfer and control volume work. For all the cases
examined, the initial pressure and temperature within the storage container was set to 100 psia and
70 °F, respectively, while the inlet temperature was held to 70 °F. The final pressure of the tank was
limited to 1000 psia. The volume of the TANK was initially set to 0.5 ft3. The results from these
studies are summarized in Tables I through 4.

Figure 11 shows the predicted control volume temperature as a function of pressure for a
variety of cooling rates with a fixed volume. As expected, the greater the heat loss, the lower the
predicted temperature. In other words, a portionof the heat of compression is removed, resulting in
lower predicted temperatures. More importantly, however, is to note that regardless of the heat
transfer rate, the predictions are nearly identical to those of the analytical solution.

Figure 12 presents the analytical and predicted control volume temperature as a function of
pressure for various heating rates. For these cases, the higher the heat addition, the higher the
final volume temperature. Again, the predicted results are nearly identical to those of the analytical
solution.

Figure 13 shows the predicted and analytical solution temperatures for the situation of an
expandable control volume in which there is no heat transfer. Since a portion of the working fluid's
energy must be used to produce work, the temperatures are lower then for the case in which the
volume is fixed. For this situation too, the code was able to predict results nearly identical to those
of the analytical solution.

Figure 14 presents the analytical and predicted temperatures for the conditions which
include both control volume work and heat transfer. The volume is equal to the pressure multiplied
by a constant. Depending on the situation examined, the predicted tempemtura was either greater
(heating) or less (cooling) than the base case. As is evident, the code was able to match the results
of the analytical solution.

SUMMARY AND CONCLUSIONS

This paper details a validation study of the SINDA/FLUINT program for several simple
situations and focused on the major building blocks of the SINDA and FLUINT portions of the code.
The code was validated by comparing its results with those of four closed form solutions. The
thermal analyzer portion of the code (conduction and radiative heat transfer, SINDA portion) was first
compared to two separate solutions. The first comparison examined a semi-infinite slab with a
periodic surface temperature boundary condition. Next, a small, uniform temperature object
(lumped capacitance) was allowed to radiate to a fixed temperature sink. The fluid portion of the
code (FLUINT) was also compared to two different analytical solutions. The first study examined a
tank filling process by an ideal gas in which there is both control volume work and heat transfer. The
final comparison considered the flow in a pipe joining two infinite reservoim of pressure. The results
of all these studies showed that for the situations examined here, the SINDNFLUINT code was able
to match the results of the analytical solutions.

To date only one large scale SINDNFLUINT model has been built and used to validate the
FLUINT code [11] and the interaction between SINDA/FLUINT modeling components has yet to be
examined. Therefore, future studies should be devoted to building large sized models which can
be verified by either analytical solutions or experimental data.
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Table1 Predictedend Analytical Temperatures for Various Heat Loading Conditions.
Initial ConditionsP1 = 100 psia, T1 = 70 °F, Tin = 70 °F, PfinaJ= 1000 psia

SINDA/FLUINT
Tfinal

Ana k:ai
Tr_ Q Volurne
CF) (Btu/hr) Relationship

253.02
241.29
229.58
193.65
132.69

5.77

253.46 0.0 V--C
241.63 -500.0 V==C
229.75 -1000.0 V--C
193.64 -2500.0 V=C
132.30 -5000.0 V--C

5.05 -10000.0 V=C
i

Table 2
i

Predicted and Analytical Temperatures for Various Heat Loading Conditions.
InitialConditions P1 = 100 psia, T1 - 70 °F, Tin = 70 °F, Pfinal= 1000 psia

SINDA/FLUINT
Ttr_

=)

Analytical
Tr_ Q Volume
(oF) (Btu/hr) Relationship

253.02
264.57
276.13
310.59
366.44
473.25

253.46 0.0 V---C
265.22 500.0 V=C
276.96 1000.0 V--C
311.76 2500.0 V=C
368.39 5000.0 V=C
476.80 10000.0 V,=C

Table 3 Predicted and Analytical Temperatures for Volume RekdJonships
InitialConditions PI = I00 psia, T1 = 70 °F, Tin = 70 °F, Pfinal= I000 psia

SINDNFLUINT
T_n_

Analytical
Tfml O Volume
(q=) (Btu/hr) Relationship

253.02
156.12
125.55
189.30

253.46 0.0 V=C
157.01 0.0 V=CP
125.38 0.0 V---CP2
189.66 0.0 V=CP I_

Table 4 Predicted and Analytical Temperatures for Various Heat Loading Conditions and
Volume Relationships.
Initial ConditionsPI = 100 psia, TI = 70 oF,Tin = 70 °F, Pfinal= 1000 psia

SINDA/FLUINT
Tfln_
C°F)

Trml Q Volume
CF) (Btu/hr) Relationship

156.12 157.01 0.0 V=CP
133.83 133.70 -1000.0 V=CP
180.19 180.29 1000.0 V=CP
40.84 40.21 -5000.0 V=CP

272.59 273.57 5000.0 V=CP
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SUMMARY

S& - Z y-

A transient, one-dimensional numerical code is developed to model the liquid motion in an axial

groove with square cross section. Axial variation in liquid level, shear stress and heat transfer between

the groove wall and the liquid, evaporation and transient body forces are accounted for in the model.

Dryout and rewet of the groove are allowed; the front location is determined numerically using

conservation of mass and linear extrapolation. Several numerical test results are presented and discussed.

INTRODUCTION

Heat pipe technology has been proposed for use in the aerospace environment as a means of

cooling electronics on fighter aircraft or as a means of thermal management aboard space-based platforms

(refs. 1-3). These environments are dynamic ones where time-varying body forces will primarily influence

the motion of the working fluid within the wick structure of the heat pipe. While the magnitudes of the

body forces in these two examples may be quite different, the effect on the working fluid in the wick is

the same; namely, a bulk movement of the fluid towards either the evaporator or the condenser, depending

on the magnitude and orientation of the body force. If the bulk motion of the fluid is towards the

condenser, then dryout of the wick structure will be enhanced and heat pipe failure will result. The ability

to correctly model liquid motion in a wick structure subject to transient body forces, then, is a necessary

first step before heat pipe technology will be accepted as a means of thermal management in the aerospace

industry.

Several attempts have been made to numerically model the liquid flow in a heat pipe wick. Two

models repeatedly found in the literature are the Groove Analysis Program (GAP), developed by NASA

(ref. 4) and a piston model developed by Beam (ref. 5). GAP is a steady-state formulation that is

applicable only to grooved wick structures. Because it is steady-state, it does not account for the time-

varying nature of body forces. It properly models the axial variation in radius of curvature; however, this

radius of curvature is only allowed to vary from a minimum at the evaporator (equal to one-half the

groove width) to a maximum at the condenser (equal to the radius of the vapor space). Because of this,

dryout is never allowed to occur and therefore, it provides no capability to predict or model the dryout

and rewet phenomena.

The piston model of Beam; however, is an unsteady formulation that does account for transient

body forces. The wick is assumed to be entirely full up to the dryout front, past which no liquid may be

present. The front is perpendicular to the axial direction, hence the reference to a piston. Because the
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wick isassumedto beentirelyfull upto thefront location, no recession of liquid and therefore, no radius

of curvature, is allowed axially along the wet portion of the wick. In an actual heat pipe, recession of the

liquid into the wick structure occurs continuously between the evaporator and condenser without causing

dryout and always occurs as a precursor to dryout. Visual observations of Reagan (ref. 6) and Hawthorne

(ref. 7) have verified this behavior. Because no liquid recession into the wick is allowed, the piston model

predicts dryout earlier than actually occurs.
A limitation of both models is that neither attempts to describe the nature or behavior of the liquid

front within the wick. In the GAP model, no liquid front is allowed to develop; the simulations are

stopped when the capillary limit is reached. In the piston model, the front is treated like a piston with no

attempt to describe what it actually looks like.

Additionally, both models assume that momentum changes in the liquid are negligible. This

reduces the momentum equation to a form of Darcy flow, which models the pressure drop by equating

the sum of pressure, shear and body force terms to zero and neglects any change in the liquid inertia.

During steady-state behavior, the liquid velocity is small and hence, inertia effects are most likely

negligible. The same conclusion cannot be deduced for the case of a transient body force environment.
A new transient numerical model is therefore warranted.

THEORY

Several assumptions are made concerning the derivation of the governing equations. The wick

is an axial groove with square cross section of constant width, w and depth, 5. One end of the groove

can be tilted relative to the other end which provides the transient body force. No flooding of the groove

is allowed and the pressure above the liquid in the groove is assumed constant and equal to ambient

pressure, Pc,.

The working liquid is ethanol and is assumed to be incompressible with density, p = 785 kg/m _.

Laminar flow within the groove is assumed at all times and kinetic and potential energy changes are

assumed negligible with respect to changes in the internal energy. Free convection and radiation losses

to the environment are also considered negligible with respect to the energy lost via evaporation.

Consider the control volume shown in Figure 1. This control volume encompasses the liquid only

and not the groove structure. The liquid flow is from left to right and the meniscus level is assumed to

vary linearly through the control volume. The equation of conservation of mass for this control volume,

noting that p dx is constant, yields

3A + _(A V) +_ =0 (1)
---bW- 0ax

where A is the liquid cross-sectional flow area, V is the average liquid velocity and m is the evaporative
mass flow rate for the differential control volume.

Figure 2 shows the same control volume with the appropriate forces (solid arrows) and momentum

terms (dashed arrows). The groove with the liquid is tilted at an angle, _, around a center of rotation

relative to the horizontal level and this angle is a function of time, which provides the transient body

force, pAgsin_gdx (g = gravitational constant). Momentum changes within the liquid, evaporative

momentum flux, shear and capillary forces are all accoUnted for. The meniscus radius of curvature, R,
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is a functionof the liquid cross-sectional flow area and therefore can vary with axial location. The

(pA f22x)d.x term is a fictitious force term which accounts for the non-inertial reference frame of the

governing equations. Applying conservation of momentum to this control volume yields

_(AV) _ _ PA) m Vsin y x/_ 1
T + -'d"x(AV" + = - Agsinw - - (p** - R )wtany+Af22x (2)p pdx pdx p

where 3' is the angle generated by the axial variation in meniscus_level, V is the evaporative mass flux
velocity, "_is the shear stress between the groove wall and liquid, A is the area over which the shear stress

acts, o is the surface tension coefficient and f2 is the angular rotation rate.

The average liquid pressure, P, at any axial location is assumed to be the ambient pressure minus

the capillary pressure clue to the curved interface, plus the pressure head due to the depth of liquid in the

groove. The average depth of liquid in the groove, h, is approximated by h = A/w, and the average

pressure head can be shown to be ½pghcosut. The average liquid pressure then, is a function of the

groove tilt angle, _, the cross-sectional flow area, A, and the meniscus radius of curvature, R.

This meniscus radius of curvature is a function of the liquid cross-sectional flow area and is

assumed to behave as shown in Figure 3. When the groove is entirely full of liquid, there is no meniscus

and the radius of curvature is infinite. As liquid evaporates or is moved by bulk motion, the meniscus

recedes into the groove and R decreases from infinity until a hemispherical shape is formed. The radius

of curvature at this condition is R = w/2. This hemispherical shape remains constant until the tangent

to the meniscus is coincident with the bottom of the groove. As more liquid is removed by bulk motion

or evaporation, the meniscus recedes further into the comers of the groove and the radius of curvature

continues to decrease. This decrease is allowed to continue until the resulting liquid pressure is zero--a

physical limitation. These three conditions (entirely full, initial hemisphere shape and tangent condition)
allow a mathematical relationship between the cross-sectional flow area and the radius of curvature to be

derived. Details of this derivation are found in Reference 6.

The shear stress between the groove wall and the liquid, -c, is modeled using

x = fP V _- (3)
2

where the friction coefficient, f, is determined using rectangular tube flow data from Shah (ref. 8) and

modified for channel flow according to Chi (ref. 9). The remaining quantities in Eqn (2) (evaporative

mass flux, groove tilt angle and angular rotation) are assumed to be known or measurable quantities.

The energy equation for this system is derived using the control volume in Figure 4. The total

energy per unit mass is approximated by the internal energy, E = e = c T, where cp is the liquid specific

heat and T is the bulk liquid temperature. The energy influx, Qin, is modeled using Newton's Law

Qi, = hinAi,(T - T), where Ai, is the groove wall area across which the heat energy travels, Tg is the
groove wall temperature which is assumed known or measurable, and hi, is the transfer coefficient. This

coefficient was calculated using
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Nu k
hin = _ (4)

Dh

where Nu is the Nusselt Number, k is the liquid thermal conductivity and Dh is the hydraulic diameter.

Nu was determined using convection correlations for constant surface heat flux (ref. 10), laminar tube flow

and corrected for channel flow similar to the method used for the friction coefficient (see ref. 6 for more

information).

The energy outflow, Qo,,,, is determined using Qou, = me_,, where _. is the latent heat of

vaporization. Qc,,_ is the rate of energy conducted axially through the control volume and was calculated

using Fourier's Conduction Law. Applying these definitions, the energy equation for this control volume
is written as

( A E ) + V + = -o-dx - p _'x
(5)

Eqns (1), (2) and (5) form the set of governing equations for the new model. The pressure-area

and radius-area relationships discussed _evionsly provide closure for the system. The temporal derivative

t_erms are grouped into a 3 x 1 matrix, U, and the spatial derivative terms are grouped into a 3 x 1 matrix,

E. The remaining terms are combined into a source term, S and the resulting system is written as

U, + _=S- (6)

where the subscripts t and x refer to time and space derivatives respectively. Eqn (6) is non-

dimensionalized and integrated using a fn-st order accurate, explicit Roe scheme. Details of the solution

methodology are found in Reference 6.

BOUNDARY CONDITIONS

The integration is performed on a one-dimensional grid, GRID1, that is I nodes wide as shown

in Figure 5. Node I lies on the left boundary; this node is also the center of rotation of the groove. As

such, it always contains liquid and because of the physical boundary, the velocity is always zero. The grid

extends to I nodes, some or all of which have liquid in them, depending on the dryout/rewet front location.

Node nb refers to the last wet node and is only equal to node I ff the groove is fully wet. The grid

remains fixed to the groove structure and does not move with the liquid.

At time level n, the total mass of liquid in the groove, m, is known. At time level n+l, assuming

mass loss only by evaporation, the total mass of liquid in the groove is

nb
n*l n

ms = ms -__mAt
i.2

(7)
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Figure 5. Numerical Grid Definitions

A second grid, GRID2, is used to update the boundary conditions and is also shown in Figure 5.

The mass within any control volume using this grid is found using

rl

mi = ½OAx(Ai" + A "i-l) (8)

and the internal mass. mi, ,, is calculated by summing mi" between volumes 3 and nb. Applying the

principle of conservation of mass to the left.most control volume of GRID2 yields the area of node 1 as

n+l m2nnh = - At (Oh" + mr)

(9)

:::::_A1"+1 = __2m2".1 _ A_,"+l
pdx

The velocity at node 1 is zero because of the physical boundary and the temperature is updated assuming
an adiabatic end condition.

The remaining mass in the groove, m, at time level n+l is found by subtracting the internal mass

and the mass at node 2 calculated in Eqn (9) above from the predicted mass at time level n+l (Eqn (7))
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n÷l n*! n+l n*|

m, = mg -mi. ' -m2 (10)

If the groove is not in a state of dryout, then m occupies control volume I and the area at node I is found

by a simple average of the areas at nodes I and I-1. The velocity at node I is identically zero and the

temperature is updated assuming an adiabatic end condition.

If, however, the groove is in a state of dryout or rewet, then a front exists and m occupies some

specified volume extending beyond node nb. Several possibilities exist regarding the distribution of liquid

extending beyond this node. Two of the more obvious are seen in Figure 6. The first order

approximation fills a right triangte with the remaining mass, while the second order approximation

attempts to match the remaining mass to a parabola with a specified slope at the front location. Higher

order matches are also possible. For this work, the first order approximation is used.

A

n+l

._

nb '"..7-..

"

..... First Order

.......... Second Order

d
ep

2 d
ep

Figure 6. Sample Front Approximations

Defining the location in the groove where the cross-sectional flow area goes to zero as the

extinction point, ep, then the distance between node ,d, and the extinction point is

2m, n*l

d = _ (11)
-- n÷l

pA._

This length can extend to one or to severn nodes beyond node nb or it may not even extend to node nb+l

depending on the magnitude of m. Regardless, the boundary conditions at the extinction point are
defined by the following relationships
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Figure8 shows the results of a ten second real time computer run. This is a three-dimensional

plot of the non-dimensional area distribution in the groove, A*, as a function of non-dimensional time,

t*, and non-dimensional axial groove location, x*. Each axis runs from a minimum value of zero to a

maximum value of one. The perspective of the liquid distribution is from an observer positioned on the

groove. According to the figure, the area distribution does not vary with time from its initial level value

of 0.5 (one-half full); the steady-state condition.

Test Two--Steady Body Force

This test was accomplished similarly to the first test; the only difference being in the initial groove

angle and liquid distribution. The groove is set at an initial angle of, _i_, = tan'_(5/L**) , and the initial

distribution of liquid is such that A* = 1 at the left end of the groove (x* = 0) and A* = 0 at the right end

(x* = 1) with a linear distribution in between, as shown in Figure 9. This provides the same volume of

liquid used in the first test. In the absence of any capillary or body forces, there should be no tendency
for the liquid to change from this position, which is the steady-state solution for the initial conditions.

Figure 10 shows the results of a ten second real time computer run and reveals no change from

the initial distribution described above. This result demonstrates that the hydrostatic and atmospheric

pressure forces, along with the body force, are modeled properly and coded correctly.

Test Three--Steady Body Force With Motion

It was necessary to determine if the code could predict the correct steady-state solution for an

initial condition other than steady-state. To demonstrate this behavior, a setup identical to test two was

used with the initial liquid distribution similar to that of test one and is shown in Figure 11. From this

initial condition, the liquid should begin to flow towards the left end of the groove (x* = 0) and reach the

steady-state conditions of test two.

Figure 12 shows the results of a ten second real time computer run. Note that as time progresses,

A* increases at x* = 0 and decreases at x* = 1. This shows bulk liquid motion towards x* = 0, and at

t* --- 1, steady-state conditions are achieved. This test demonstrates that the code predicts the correct

steady-state solution for a non steady-state initial condition.

Test Four--Steady Body and Capillary Forces

This test was performed to determine ff the capillary force was modeled and coded properly. The

initial conditions for this experiment are seen in Figure 13. The groove tilt angle was similar to test three

and the liquid distribution was the same as test two. In the absence of the capillary force, it was seen in

test two that the liquid had no tendency to move. However, if the capillary force is now considered, the

liquid should have a tendency to move towards x* = 1 since the liquid in that end has receded further into

the groove and the capillary influence should be greatest.

Figure 14 shows the results from this study. With the capillary force present, the liquid does

indeed move towards x* = I as seen by the increase in A* at x* ffi 1 and a corresponding decrease in A*

at the other end of the groove, x* = 0. The liquid approaches a steady-state distribution different from

the steady-state condition seen in Figure 10. This is due to the inclusion of the capillary force.
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A =0
ep

/__ n+l_ 2

el, Z mr

(12)

If d p is less than Ax, then m, is not sufficient to extend the triangular profde to the node nb+l. In this
case, the area, velocity and temperature distributions of the liquid are completely defined and no further

calculations are required.

If, however, d is greater than Ax, then the remaining mass is sufficient to extend the profile to
A a*lnode nb+l. In this case, _,_ is calculated using the area at node nb and the slope from Eqn (12).

Applying conservation of mass on the control volume between nodes nb and nb+l yields the velocity as

(A V)_.,_ _I_.jT1 _ m
_/a+l ab+l W

--nb+l ----
A n+I

nb+l

(13)

where V is the volume of the differential element. A first order approximation to the volume derivative

term is used and the evaporation term is evaluated at the temperature of node nb at time level n+l. The

temperature is updated assuming no axial conduction.

After the area, velocity and temperatures are updated, the mass in the new control volume is

calculated and subtracted from m and a new m is established. Node nb+l is renumbered as node nb

and a new value of d is calculated and established. The procedure described above is repeated until this
new value of d is less than Ax .

ep

NUMERICAL TEST PARAMETERS AND RESULTS

Several numerical experiments were performed with the new model to establish cov_fidence in its

ability to model the flow of liquid in a heated capillary structure subject to transient body forces. Since

no comparisons to physical data are made, absolute accuracy of the results is not considered important.

However, correct trends need to be demonstrated as well as the ability to numerically model the formation

of a front in the groove structure.

Test Ono==No Body Force

The purpose of this test was to demonstrate that liquid in a groove that is initially level and

remains level should have no tendency to move. The test setup is shown in Figure 7. The groove, shown

by the dotted line in the figure, is a square channel. The width, w. and depth, 5, are 1.5875 ram, where

the width dimension is into the page. The groove length, L.., is 0.254 m, the liquid is ethanol and the

capillary force and evaporation are neglected. In this test,the groove is maintained at the ambient

temperature, T = 295K, and is not allowed to rotate. The initial area distribution is such that the groove

is exactly one-half full. This is represented by the shaded area in the figure.
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The remaining three numerical experiments were performed with the capillary force and

evaporation present. The goal of these remaining experiments was to determine the code's ability to

model the liquid motion in the groove under transient body forces and external heating; two important

parameters that were neglected in tests one through four. The magnitude and duration of the body forces

and heating were sufficient to result in dryout in the groove: a phenomenon also not studied in tests one

through four.

Test Five--Transient Body Force, No External Heating

This test was performed to determine if the code could capture the formation of a dryout front in

a groove that was subject to a transient body force but no external heating. No external heating refers to

no externally applied heat sources, such as a heater. It does not mean that no heat transfer takes place;

in fact, heat transfer does occur in the form of evaporation.

In this test, the groove was initially at a level condition and one-third full of liquid. The groove

was rotated through the schedule shown by the bold line in Figure 15. This schedule was

= W,_ sin(2r_cot) 0<t<5

_=0 t>5

with a maximum angle, W_,, of 0.0524 radians and a frequency of co = 0.1 Hz. This particular schedule

was chosen after numerous numerical test runs because it resulted in a partial dryout of the groove

followed by a rewet. The results of this test run are shown in Figure 16. As the transient body force is

applied, the level of liquid at x* - 0 increases and the level at x* -- 1 decreases, indicating bulk liquid

motion towards x* = 0. At approximately t* -- 0.3, the groove begins to dry out as noted by A* -- 0 at

x* = 1. As the tilt schedule reverses direction back towards the initial level condition, the liquid motion

follows and the rewet is captured by the increase in A* from its zero value. At t* = 1, the liquid

distribution in the groove is not level as steady-state conditions would dictate. The code was allowed to

run for additional time and the liquid distribution did eventually reach a quasi-steady-state condition. This

quasi-steady-state refers to the liquid level in the groove being uniform along its length but decreasing in

time due to evaporation of the liquid. The time shown in Figure 16 was chosen to reveal details of the

dryout and rewet. This experiment validated the code's ability to caputre a dryout and rewet due solely

to a transient body force.

Test Six--No Body Force, External Heating

This test was performed to determine if the code could capture the formation of a liquid front in

a groove subjected to external heating but no transient body force. In this test, the groove was initially

at a level condition and entirely full of liquid. The groove was kept level throughout the test as shown

in Figure 17. The left end of the groove was maintained at T = 295K , while the right end was

maintained at T = 345K , with a linear distribution of temperature between x* = 0 and :t-* = 1. A

maximum temperature of 345 K was chosen to remain below the boiling point of ethanol. This test was

carried out for 480 seconds. For the first 420 seconds, the temperature profile described above was used.

99



Thiswasdoneto generate a dry region in the groove. Between 420 and 480 seconds, the temperature

proftle was reduced to a uniform temperature of T = 295 K to allow a rewet to occur.

The results of this experiment are seen in Figure 18. Several interesting trends are seen in this

figure. First, the decrease in liquid volume between t* = 0 and t* = 1 is evident by the decrease in A*

along the groove. Note however, that the rate of decrease in A* is greater at x* = 1 than at x* = 0. This

is due to the elevated temperatures as :t-*approaches one. Higher temperatures result in higher evaporation

rates and a quicker depletion of liquid from the groove.

The second trend is the formation of a dryout front, A* = 0, at approximately t* = 0.9. At this

point, the elevated temperature profile was reduced to the uniform profile and a rewet of the groove was

noted. At t* = 1 the liquid has not reached its quasi-steady-state condition. This test validated the code's

ability to capture a dryout and rewet due solely to external heating.

Test Seven--Transient Body Force, External Heating

This numerical experiment was performed to determine the code's ability to capture a dryout and

rewet in a groove subject to both transient body forces and external heating; similar to what was

investigated in the physical experiments. The test setup is shown in Figure 19. The heating schedule of

test six was combined with the tilt schedule of test five. The total run time for this experiment was ten

seconds. This was done to compare the results to those of test five.

The results are seen in Figure 20. The same trends noted in Figure 16 are seen here; namely, the

dryout of the groove at approximately t* = 0.3 and the rewet following the groove rotation back to level.

The primary difference between these two figures is in the rewet phase. In Figure 16 the rewet is seen

by the rise in A* at x* -- 1 between t* = 0.5 and t* = 1. The same region in Figure 20, however, shows

a dryout condition; in fact, at x* = i, A* is zero at t* = 1, compared to A* = 0.045 in Figure 16. This

is due to the elevated temperatures and correspondingly increased evaporation rates.

Test Eight--Increased Frequency

An additional numerical study was performed to demonstrate the ability of the code to model the

liquid flow in a heated capillary structure under a frequency and amplitude greater than those of tests one

through seven. The code was run at the same conditions as numerical experiments one through seven,

but the amplitude was allowed to vary between +0.0524 and -0.0524 radians. Additionally, a frequency

of 1 Hz was used; one order of magnitude greater than the maximum frequency of the fa'st seven

numerical tests. Initial liquid distribution and temperature boundary conditions are shown in Figure 21.

The results of a sixty second run are shown in Figure 22. The sinusoidal motion of the liquid is

evident. The overall volume of liquid in the groove is decreasing with time as evidenced by the maximum

amplitude of the area peaks at x* = 0 and x* = 1 decreasing with time. No dryout is seen in the figure

but this is only because the computer run was stopped before dryout occurred. The code appears to

predict the correct trends in the liquid motion.
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CONCLUSIONS AND RECOMMENDATIONS

A transient, one-dimensional numerical code has been developed which is capable of modeling

the liquid motion in a grooved heat pipe wick structure subject to transient heat loads and body force

effects. Simple numerical tests demonstrated its ability to predict the correct trends in axial variation of

liquid inventory, to include both dryout and rewet, caused by asymmetric heating, transient body forces

or a combination of both. It is recommended that experimental data be generated to compare with the

results from this model to provide validation of the governing equations, simplifying assumptions and

solution methodology.
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SUMMARY

A higher-order finite-difference technique is developed to calculate the developing-flow
field of steady incompressible laminar flows in the entrance regions of circular pipes. Navier-
Stokes equations governing the motion of such a flow field are solved by using this new finite-
difference scheme. This new technique can increase the accuracy of the finite-difference

approximation, while also providing the option of using unevenly spaced clustered nodes for
computation such that relatively fine grids can be adopted for regions with large velocity .gradients.
The velocity profile at the entrance of the pipe is assumed to be uniform for the computauon. The
velocity distribution and the surface pressure drop of the developing flow then are calculated and
compared to existing experimental measurements reported in the literature. Computational results
obtained are found to be in good agreement with existing experimental correlations and therefore,
the reliability of the new technique has been successfully tested.

INTRODUCTION

Due to the effect of viscous dissipation, velocity and pressure distributions in fluid flows
normally vary non-uniformly. The flow velocity typically has a large spatial variation near a wall
and a relatively small variation in a region far away from wall surfaces. To calculate flow
characteristics, the classical finite-difference method discretizes the mathematical domain into
uniform-size meshes. In order to obtain accurate results without resolving to using extremely fine
meshes, the physical domain is preferable to be discretized into unenvenly spaced clustered nodes
such that fine meshes can be adopted in regions with large velocity gradients and coarse meshes
can be used in regions with small velocity gradients. As was discussed by Anderson et al (ref. 1),
a physical domain discretized by using unevenly spaced clustered nodes can be transformed into a
mathematical domain consisting of evenly spaced nodes by using the method of coordinate
transformation such that the classical finite-difference technique can be applied. However, to find a
proper mathematical function to transform coordinates of a physical domain discretized by using
arbitrarily clustered nodes into new coordinates for a mathematical domain with uniformly spaced
meshes is practically infeasible because of the complex nature of this type of transformation. In

107
PRECEDING PAGE BLANK NOT FILMED



addition,transformed governing equations for the mathematical domain can become highly
transcendental because of the nonlinear behavior of fluid flows. Hence, it is highly desirable to
develop a finite-difference technique which can be applied directly to a mathematical domain
discretized by using arbitrarily spaced clustered nodes such that the transformation of governing

equations can be avoided.
Several existing methods which utilize the classical finite-difference formulation to solve

partial differential equations have been major tools in computational fluid mechanics. The
conventional explicit method, Crank-Nicholson method, and the Box method of Keller (refs. 2 to
4) are major finite-difference techniques that have been widely used in computational fluid
mechanics. However, theses methods are only second-order accurate and are not appropriate to be
applied to cases with unevenly spaced clustered nodes without using the coordinate transformation
technique. In view of these shortcomings, the objective of this work is to develop a fourth-order
explicit finite-difference scheme such that clustered nodes can be directly used in a mathematical
domain. In addition to having the capability of allowing untransformed governing equations be
applied directly to unevenly spaced clustered nodes in a physical domain, this new technique
determines the first four derivatives of dependent variables with respect to any independent variable
consistently to the fourth-order accuracy. Therefore, it should be more accurate than the classical
second-order f'mite difference method.

In order to test the reliability of the new explicit finite-difference technique, it is used to
solve the flow-development problems of fluid flows in the entrance region of a circular tube as well
as in the leading-edge region between parallel plates. The well known solutions of Couette flow
and of plane Poiseuille flow are applicable to the fully developed regions of these problems. As
were described by Sparrow et al (ref. 5), several analytical techniques such as linearized methods
and boundary-layer approaches have also been developed to approximately model flows in the
entrance regions of these two problems. Sparrow et al (ref. 5) used a linearized method to solve
the developing flow problems for both cases. In addition, Bodoia and Osterle (ref. 6) also utilized
the classical finite-difference method to solve these flow-development problems. However, they
applied Prandtl's momentum equation for the boundary layer instead of Navier-Stokes equations to
these problems. In order to properly model the actual developing process, the present analysis
applies Navier-Stokes equations to the entire domain and utilizes an iterative sweeping technique to
calculate nonlinear terms. Theffore, the present mathematical approach is different from any
existing analyses.

HIGHER-ORDER FINITE-DIFFERENCE FORMULATION

Five different types of higher-order finite-difference formulations which allow the usage of
clustered nodes can be developed by using Taylor's series expansion of functions up to the fourth-
order accuracy. Nodal intervals for these five types of formulation, namely, the central difference,
the partially forward difference, the fully forward difference, the partially backward difference, and
the fully backward difference, are shown in Figure 1. All five types can be used for different nodes
in the same domain and their selection for each node depends upon the distribution of unknown
dependent variables surrounding the node under consideration. The first, the second, the third, and

the fourth derivatives of a dependent variable with respect to an independent variable evaluated at
this particular node (node i) can be expressed algebraically in terms of the nodal values of the same
dependent variable associated with the five neighboring clustered nodes. The coefficients of these

linear algebraic relationships can be calculated for any values of nodal intervals by solving four
simultaneous linear algebraic equations relating to Taylor's series expansion. As an example,
central-difference relationships for the case with uniform intervals (hi = h2 - h3 = h4 = h) can be

expressed as
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_xx] = ._L_ (ui. 2 . 8ui_ 1 + 8Ui+l - ui+2)x=xi 12h (I)

d2u] 1 (-Ui-2 + 16ui.1 30ui + 16ui+l - ui+2)dx2 x--xi'- --12h 2

x-xS- --2h3 (-ui-2 + 2Ui_l - 2Ui+l + ui+2)

[d4u]dx4 x=x,= "L (ui'2 - 4ui-1 + 6ui " 4Ui+l +ui+2)h4

(2)

(3)

(4)

where Ui-2, Ui-1, Ui, Ui+l and Ui+2 are values of u evaluated at xi_ 2, Xi.l, xi, Xi+l and Xi+2,

respectively.

FORMULATION OF THE PROBLEM

Two physical problems are considered to test the higher-order finite-difference technique.
one is the axisymmetric developing incompressible laminar flow in a circular pipe and the other is
the two-dimensional developing incompressible laminar flow between parallel plates. Flow
velocity and the pressure at the inlet region are assumed to be uniform and the no-slip boundary
conditions are imposed on all wall surfaces. By utilizing a switching constant m for both the two-
dimensional problem (m - 0) and the axisymmetric problem (m = 1), governing equations for both
problems in different regions can be expressed as follows:

(A) General Region of Fluid Flow (0 < y* < 1)

(1) Continuity Equation

bbU* +rnv* +bY* =0

bx* y* by* (5)

(2) Momentum Equations

__ bu'=.abbP'+b 262u" ¢. rn bu', 1ebzu_.__*_*bu* bu* + v*

bx* _y* bx* Re _ y'Re by* by .2 (6)

__ bv* -abP*+b 262v * m bv* my* +_] b2v*bu* by* + v* -- = I- -- -

bx* by* by* Re bx,2 y'Re by* y'Re Re by,2 (7)

(B) Centerline Region (y*= 0)

(1)Continuity Equation

b _ + (m+1) bv___*.*= 0by* (8)

(2) Momentum Equations
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b2 O2u* (l+m) O2u*bu* Ou._.._*= -ab ¢)P" + +

0x* i0x* Re OX*2 Re 0y,2 (9)

V*--0 (10)

(C) Wall-Surface Region (y* = 1)

(1) No-Slip Conditions

U*'-V* --0 (11)

(2) Momentum Equation

ab _P* + a_P* = b2 _2u* /}u"._+ m

_x* _y* Rc _x*2 y*Rc_y*

. mv____*+ 1 _2v*

y'Re Rc by,2

+ m _v*

y'Rc Oy*

(12)

where

b-L_- ' x*m x YL, Y* ---H,

8
u

PN

a=-- pHU.

pU 2" Re ffi tt

Here, x and y arc either the Cartesian coordinates in the longitudinal and the n'ansvcrse directions
for the parallcl-platc problem or the cylindrical coordinates in the axial and the radial directions for
the circular-pipe problem. The origins of these coordinate systems arc located at the flow inlets.
The x axis is located eithcr at the ccnterlinc of the parallel planes for the two-dimensional problem
or at the center of the pipe for the axisymmctric problem. The flow domain in the x and y directions
are denoted as L and H, respectively. Hence, H represents either the half distance between two
parallel planes or the radius of the circular pipe. The axial velocity and the pressure at the inlet arc
specified as U- and p.., respectively. Velocity components in the x and the y directions as well as

the pressure, me density, and the viscosity of the flow axe denoted as u, v, p, p, and P.,
respectively. The x-momentum equation applied at x = 0 (ccntcrline region) is derived by applying
LTIospital rule to the Navier-Stokes equation. In addition, equation (12) is obtained by combining
both the x and the y components of the momentum equations such that the number of unknowns
can bc identical to the number of equations at each surface node.

Governing equations for the entire domain, equations (5-12), are discretized in the y*

direction by using the present higher-order finite-difference technique to adapt to unevenly spaced

clustered nodes. However, they arc discretized in the x* direction by applying the classical finite-
difference formulation to evenly spaced nodes such that an iterative sweeping technique can bc
used to calculate nonlinear terms. The initial value of a nonlinear term associated with a given node
can bc estimted by using values of terms evaluated at upstream nodes at the same y* location such
that.governing equations can bc solved line by line from the upstream to the downstream by using

the classical backward difference formulation in the x* direction. To reduce the inaccuracy due to
this approximation, results calculated for each line arc iterated to a convergent value before the
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nextmarchingsequenceof thesweepingprocessis undertaken.To starttheprocess,thefirst two
lines haveto be solvedsimultaneouslyby usingthe centraldifferencefor the first line andthe
backwarddifference for the secondline in the x° direction. For all subsequentsweeping
calculations,only or_elineof nodesareinvolvedin the process.

NUMERICAL RESULTS

The normalizeddomainsfor both the parallel-plateand the circular pipe problems are
discretized by dividing the domain in the x* direction into 30 evenly spaced intervals and the
domain in the y* direction into 20 uneven clustered intervals. These unevenly speced intervals in
the y* direction vary from 0.0025 at the wall to 0.1 at the centerline. Table 1 compares non-
dimensional axial velocities of the circular pipe between those obtained by the present analysis and
those measured by Nikuradse (ref. 7) as well as those calculated by Sparrow et al (ref. 5). Table 2
shows the comparison of non-dimensional longitudinal velocities for the parallel-plate problem
between those calculated by using the present technique and those determined by Sparrow et al as
well as by Bodia and Osterle (refs. 5 and 6). Table 3 summarizes the comparison of the non-

dimensional centerline pressure drop, [2(p** - p)]/(pU_, of the pipe flow between those calculated

by using the present analysis and the Schiller's experimental correlation reported by Prandtl and
Tietjens (ref. 7). Results obtained by using the present technique are shown to be in good
agreement with those determined by existing techniques. The non-dimensional entrance length of
the circular pipe estimated by locating the cross section with its centerline velocity being 99% of the
fully developed centerline velocity is found to be approximately equal to x/(DReD) -0.0593 or

x/(HRe) = 0.237 which is roughly consistent with the value of x/(DReD) = 0.05 suggested by

Kays (ref. 8) or the value of x/(HRe) = 0.26 reported by Prandtl and Tietjens (ref. 7) for pipe
flows.

CONCLUSIONS

A higher-order finite-difference technique which allows the usage of clustered nodes has
been successfully developed. Numerical results obtained in the present analysis have also verified
the reliability of this technique. Therefore, it can be a very useful tool in computational fluid
mechanics because of its accuracy and the need to use unevenly spaced clustered nodes for
modeling fluid flows.
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TABLE 1 - Comparison of the non-dimensional axial velocity (u/U**) of pipe flows

0.01

0.02

0.03

0.04

0.05

0.10

0.20

Present Analysis

y/H

0.0 0.4 0.8 0.9

1.34 1.32 0.99 0.63

1.44 1.41 0.92 0.53

1.53 1.48 0.87 0.48

1.60 1.52 0.84 0.46

1.66 1.56 0.81 0.44

1.84 1.63 0.76 0.40

1.97 1.67 0.73 0.38

Nikuradse's Expermental
Measurement (ref.7)

y/H

0.0 0.4 0.8 0.9

1.30 1.32 1.12 0.71

1.43 1.44 0.95 0.58

1.53 1.53 0.89 0.52

1.60 1.58 0.86 0.50

1.66 1.60 0.83 0.48

1.83 1.65 0.77 0.41

1.97 1.67 0.72 0.38

Analysis by Sparrow et al
(ref. 5)

y/H

0.0 0.4 0.8 0.9

1.32 1.31 1.00 0.59

1.44 1.42 0.92 0.51

1.53 1.49 0.87 0.47

1.60 1.53 0.84 0.45

1.66 1.57 0.81 0.44

1.85 1.63 0.76 0.40

1.97 1.67 0.72 0.38

TABLE 2 - Comparison of the non-dimensional axial velocity (u/U..) of flows between parallel plates

X

HRe

0.01

0.02

0.03

0.04

0.05

0.10

0,20

Present Analysis

y/H

0.0 0.5 0.7 0.9

1.20 1.15 1.00 0.50

1.25 1.18 0.96 0.42

1.30 1.18 0.91 0.37

1.33 1.18 0.88 0.35

1.36 1.17 0.86 0.34

1.44 1.15 0.80 0.30

1.49 1.13 0.77 0.29

Finite-Difference Calculation

by Bodia and Osterle (ref. 6)

y/H

0.0 0.5 0.7 0.9

1.16 1.16 1.05 0.50

1.22 1.18 0.99 0.41

1.27 1.18 0.93 0.37

1.31 1.18 0.89 0.35

1.34 1.17 0.86 0.33

1.44 1.14 0.80 0.30

1.49 1.13 0.77 0.29

Calculation by Sparrow et al
(ref. 5)

y/H

0.0 0.5 0.7 0.9

1.18 1.16 1.03 0.48

1.24 1.18 0.96 0.40

1.29 1.18 0.91 0.37

1.33 1.17 0.88 0.35

1.36 1.16 0.86 0.33

1.44 1.14 0.80 0.30

1.49 1.13 0.77 0.29
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TABLE 3 - Comparisonof thenon-dimensionalcenterlinepressuredrop,
2(p**-p)/pU2**,of pipeflows.

X

HRe

0.01

0.02

0.03

0.04

0.05

0.10

0.12

0.16

Present Analysis

0.89

1.21

1.49

1.74

1.96

2.94

3.30

3.98

Schiller's Correlation

(ref. 7)

0.66

1.03

1.27

1.48

1.80

2.68

3.18

3.70

114



9 6 N95. 27353

A CASE STUDY OF VIEW-FACTOR RECTIFICATION PROCEDURES FOR DIFFUSE-GRAY

RADIATION ENCLOSURE COMPUTATIONS

Robert P. Taylor and Rogelio Luck
Thermal & Fluid Dynamics Laboratory
Department of Mechanical Engineering

Mississippi State University
Mississippi State, Mississippi

f

'-P../Z
ABSTRACT

The view factors which are used in diffuse-gray radiation enclosure calculations are often

computed by approximate numerical integrations. These approximately calculated view factors will

usually not satisfy the important physical constraints of reciprocity and closure. In this paper several
view-factor rectification algorithms are reviewed and a rectification algorithm based on a least-squares

numerical filtering scheme is proposed with both weighted and unweighted classes. A Monte-Carlo

investigation is undertaken to study the propagation of view-factor and surface-area uncertainties into

the heat transfer results of the diffuse-gray enclosure calculations. It is found that the weighted least-

squares algorithm is vastly superior to the other rectification schemes for the reduction of the heat-

flux sensitivities to view-factor uncertainties. In a sample problem, which has proven to be very

sensitive to uncertainties in view factor, the heat transfer calculations with weighted least-squares
rectified view factors are very good with an original view-factor matrix computed to only one-digit

accuracy. All of the algorithms had roughly equivalent effects on the reduction in sensitivity to area

uncertainty in this case study.

INTRODUCTION

It is general knowledge in the radiation heat transfer literature that the view factors in diffuse-

gray radiation enclosure calculations should be computed in such a way that they satisfy the physical

constraints of reciprocity and closure. For systems with a large number of surfaces, the only

practical way to compute the view factors is by approximate numerical integrations. Monte-Carlo
integration is a popular technique which is robust and has the added advantage of providing an

estimate of the uncertainty in each calculation. These approximately computed view factors will only
in the rarest of coincidences satisfy the reciprocity and closure constraints, and artificial means of

enforcement must be adopted.

Most heat transfer textbooks adopt a naive enforcement. Only the view factors above the

diagonal in the view-factor matrix are computed. The view factors below the diagonal are computed

using reciprocity relationships, and the view factors along the diagonal are computed using closure.
This technique is naive because it allows the view factors along the diagonal to be negative. Negative

view factors are of course blatant physical impossibilities. Tsuyuki [1] presents a refined form of the
naive enforcement which avoids negative view factors, van Leersum [2] presents an iterative

approach which enforces closure and reciprocity on an approximate set of view factors and avoids

negative instances.

It is often stated in the radiation heat transfer literature (Brewster [3] for example) that reciproci-
ty and closure are required to avoid ill-conditioned matrixes in the linear equation set that results from

the diffuse-gray enclosure analysis. Taylor et al. [4, 5] have demonstrated that diffuse-gray radiation
enclosure problems can be very sensitive to errors in the view factors even when the coefficient

matrixes are very well-conditioned with condition numbers of order 2 and 3. In their work, they

found that the simultaneous enforcement of reciprocity and closure using the naive algorithm
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described above will greatly reduce this sensitivity. Also, Taylor et al. demonstrated that enforce-

ment of closure and reciprocity reduced the sensitivity of the heat-flux results to uncertainties in the
surface areas.

This paper extends the previous work of Taylor et al. by considering more advanced reciprocity

and closure enforcement algorithms and comparing the propagation of the view-factor errors and

surface-area errors into computed heat-flux results of the diffuse-gray enclosure analysis for the
different methods.

Four view-factor enclosure algorithms are discussed and compared

1) No enforcement--all view factors independently computed.

2) Naive enforcement.

3) van Leersum's enforcement.

4) Optimal enforcement.

The optimal enforcement algorithm uses a least-squares optimization which finds the minimum root-

sum-square charge in the view factors which will simultaneously enforce reciprocity and closure.
Nonnegativity conditions can also be included in the optimization algorithms.

The technique used for the comparison is a Monte-Carlo uncertainty analysis of a sample

problem which has proven to be hypersensitive to errors in the view factors when reciprocity and
closure are not enforced. The results are the distributions in computed surface heat fluxes for

assumed uncertainty distributions of the original unrectified view factors and for assumed uncertainty
distributions in surface areas.

DIFFUSE-GRAY ENCLOSURE FORMULATION

Radiation exchange between finite diffuse-gray areas which form an enclosure is discussed in

almost all general heat transfer textbooks. Excellent detailed discussions can be found in any thermal
radiation heat transfer textbook (Brewster [3] and Siegel and Howell [6], for example). The basic

restrictions are that each surface have uniform temperature, uniform radiative properties which are

diffuse and gray, and uniform radiosity. Boundary conditions for the k-th surface are expressed by

specifying either the surface heat flux, qk, or the surface temperature, tk. Mixed boundary conditions

cause no problem. If all of the surfaces with specified heat flux are considered first as surfaces 1

through M and the surfaces with specified temperatures numbered M + 1 through N, the following
set of linear equations can be obtained for the radiosity values [4,5]

[i- (i- l,:' q.=b (D

where D a is a diagonal matrix with areas as elements, F is the view factor matrix, D, u is a diagonal

matrix with zeros for elements in rows 1 through M and ek in rows k = M + 1 to N, b is a vector

whose first M elements are qk (k = 1,2,-..,M) and whose last N-M elements are %or; (k =

M+ I,...,N), and qo is the vector of radiosities.

Equation (1) is solved for the radiosities. If the result r is taken to be the vector whose first M

elements are %ot; (k = 1,2,...,M) and whose last N-M elements are qk (k = M+ 1,-.-,N), the final

equation is

(2)
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where D_ u is the complement of D_ and has ek for the first M elements and zeros for the last N-M

elements.

Usually at this stage of the development, the view-factor reciprocity relationship

FrD. = Da F (3)

is substituted into equations (1) and (2) to simplify the formulas. However, in this investigation, we

are interested in cases where reciprocity is not strictly enforced. In that case, it is more appropriate

to work with equations (1) and (2).

VIEW-FACTOR RECTIFICATION

Three view-factor rectification schemes are considered: 1) Naive, 2) Leersum's, and 3) least-

squares optimum. For the least-squares optimum three subsets are considered: 1) unweighted
without nonnegativity, 2) unweighted with nonnegativity, and 3) weighed with nonnegativity. Each of

these procedures is discussed below.

Naive Rectification

For the naive rectification, the view factors above the main diagonal in the view-factor matrix,

F, are retained and all others are discarded. The upper-triangular matrix containing these remaining
view factors is designated as U and its transpose as UT. Equation (3) can then be used to compute

the missing view factors below the diagonal. If the lower-triangular matrix containing the view

factors below the main diagonal calculated by reciprocity is designated LN, equation (3) can be
written as

L_, = D, -t U rD, (4)

The rectified view-factor matrix excluding the diagonal is obtained by combining the lower- and

upper-triangular matrixes

FN= LN + U (5)

Next the diagonal elements are computed using the closure relation

N

j=l
j*i

(6)

No attempt is made to ensure nonnegative view factors. The physically impossible negative view

factors are naively accepted.

Leersum's Rectification

van Leersum (1989) has published an iterative scheme which can be considered a refinement of
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the naive rectification. His method spreads the closure adjustments over all of the view factors and

assures nonnegative view factors. His algorithm is given below.

1) For each row in the F, compute a correction factor based on closure

4:1-E m
k-I

where m is the number of nonzero view factors in row i.

2) For each nonzero view factor in row i, apply the correction

: +a,, k : 1, ...,Iv

(7)

(8)

3)

If any fLii < 0, decrease m by the number of negative values and recalculate di bypassing the

view factbrs which made the previous fLij negative. Repeat this procedure until no negative
view factors are obtained.

Enforce reciprocity by computing values for column i

aift._
/,_- ,k=l,...,N

a k

4) Repeat this process in turn for each row.

5) Since the enforcement of reciprocity in 3) disturbs the closure forced in 1) and 2), repeat the

entire process iteratively until the values of di are arbitrarily small.
The step-by-step enforcement of reciprocity in 3) over wrights all of the original view factors

below the main diagonal; therefore, Leersum's procedure only considers the diagonal and upper

triangular elements in the original view-factor matrix. Also, it is not clear why zero-valued view
factors are considered to be exact and are not allowed to be modified.

Least-Squares Optimum

The least-squares optimization problem can be posed as the quadratic minimization of

N N

y =E E w,j¢o -
i-I j-I

subject to the closure and reciprocity equality constraints where the fii's are the original approximate-

ly determined view factors, foij's are the corrected view factors, and _vij's are the weights used when
the view factors have unequal uncertainty. The closure and reciprocity constraints are

N

(9)

(10)

foij = 1, i= l, ..., N (11)
j-1

ajfaj i - aifoO = 0 i = 1, N - 1, j = i +I,N (12)
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If nonnegativity is desired, the inequality constraints can be applied

fo¢>O i = 1,...,N,j= 1,...,N (13)

This problem can be readily solved using any number of nonlinear-programming techniques.
However, considerable insight can be gained and a computational formula can be derived if the

problem is viewed from a geometric standpoint. First, the view factors are grouped into a column

vector instead of a matrix. The view-factor matrix is stacked in row-major form; for example, the 2
× 2 view-factor matrix becomes

111 I

I A2 .112 1

F= -f=
If.,f..J ,%,i

Closure and reciprocity are enforced by applying the equality
form a set of linear equations

R'f=¢

4" !

J221

constraints (equations 11 and 12)to

(14)

(15)

The 2 × 2 system would yield, for example

i °0 1

a I -a 2

(16)

Equation (15) has N(N - 1)/2 degrees of freedom. The Naive rectification is obtained by specifying

the N(N - 1)/2 view factors above the main diagonal and computing the remainder from equation
(15). However, it is more desirable to use all of the N 2 view factors.

The solutions of equation (15) can be factored into two orthogonal subspaces--the rowspace and
the nullspace. The rowspace component of the solution is computed using the expression (Strang [7])

f,.,,= R  (RR c (17)

This vector is the particular solution of equation (15) which has the least norm. It is a unique and

necessary component of all solutions of equation (15). The other component of the solution (f - frow)
should lie in the nuilspace of the reciprocity and closure matrix R and can be expressed as a linear
combination of basis vectors for the nullspace

- f,_,,) = Nbx (18)
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where N b is the matrix whose columns form that basis and x contains the weights of the linear
combination. However, if there are errors in the computed view factors, f, equations (18) will not be

consistent, and we must resort to the least-squares solution [7]

I,:N.) - :..I

The projection of (f - frow) onto the nullspace, then, is the desired set of corrected view factors

f_)

and the least-squares optimum set of view factors is

f._ =f.. + f...n

(19)

(20)

(21)

When the data are not all equally reliable (usually the case for view factors), weighted least

squares should be used for the solution of equations (18) [7]

f_,_ = Nb(N _ V -l Nb) -1N_" V -1_f - f _,) (22)

where V is the covariance matrix, and

f_ = f_,, + f_ (23)

The view-factor rectifications computed using equations (21) and (23) do not enforce normegativ-

ity.

The least-squares optimum view-factor rectification obtained through equations (21) and (23) are

exactly the same as those which would be obtained by solving the quadric minimization problem in

equations (10), (I 1), and (12) without considering the nonnegativity constraints.

As discussed before the view factors must be normegative to be physically realistic; a negative

view factor is meaningless. It is our opinion and experience that allowing slightly negative values in

the rectified view-factor matrix does not seriously impact the fidelity of the heat transfer results.

Certainly, the strict enforcement of reciprocity and closure has had a much stronger impact on our
results.

A two-step procedure which is easy to implement and closely approximates the results of the

nonlinear-programming solution with the nonnegativity constraints is to apply equations (21) or (23)

and to assume that the equality in equations (13) would be enforced on all negative values. These

view factors are set to zero and removed from consideration obtaining a reduced order problem, and

the process is then repeated with the reduced set of data. This procedure has proven to give exactly
the same set of rectified view factors as the nonlinear-programming solution in about 90% of the

cases and only slightly different ones in the other 10% of the cases.

The rectification algorithm for the least-squares projection is as follows

1) Construct the closure and reciprocity matrix R.

2) Compute the row space component frow using equation (17).
3) Construct the nullspace matrix N. (This can be constructed using standard routines).

4) Compute the nullspace least-squares projection using equation (20) or equation (22) for the
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weighted case.

5) Compute the optimum rectified view factors using equation (21) or (23). View factors fopt

or f_ now satisfy reciprocity and closure.

6) If nonnegativity is enforced, search fopt or fo_t for negative entries, and set these to zero.

7) Remove all zero view factors from consideration. Remove the columns of matrix R
corresponding to each diagonal zero element. For each off-diagonal zero reciprocal pair,

remove the corresponding columns and reciprocity rows from the matrix R. The process is
run a second time starting with step 2 and the reduced set of original view factors.

All of the rectification algorithms presented herein apply reciprocity using the best estimates of

the areas in equation (15) as if the areas were known exactly. This is usually not a serious deficiency

since the areas can usually be determined with low uncertainty. The authors are currently exploring

procedures to properly weight the rectification procedure to account for area variance.

NUMERICAL EXAMPLES

The following problem from the heat transfer text by Incropera and Dewitt [8] is used as a basis

of comparison of the different techniques in this paper.
13.62 A room (Figure 1) is represented by the following enclosure, where the ceiling (1) has

an emissivity of 0.8 and is maintained at 40"C by embedded electrical heating ele-
ments. Heaters are also used to maintain the floor (2) of emissivity 0.9 at 50"C. The

right wall (3) of emissivity 0.7 reaches a temperature of 15"C on a cold, winter day.
The left wall (4) and end walls (5A, 5B) are very well insulated. To simplify the

analysis, treat the two end walls as a single surface (5). Assuming the surfaces are

diffuse-gray, find the net radiation heat transfer from each surface.

(_ _C) r_ "_ _/_

Figure I. Schematic of a Room for the Example Problem.

This problem was the genesis of our interest in the subject of view-factor sensitivity and rectification.

This problem was assigned in the second heat transfer course at Mississippi State University during
the Fall 1992 term. Two students, Miguel and Simon, ignored the simplification and worked the

problem as a six-sided enclosure. Miguel computed his view factors to four-digit accuracy and Simon
to two-digit accuracy; they got radically different answers for the heat fluxes. An analysis of this

problem and the cause for this hypersensivity are discussed in a previous publication (Taylor et al.
[4]).
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Theview-factor matrix computed to four-digit accuracy is

F

0.0 0.394 0.1921 0.1921 0.1109 0.1109"

0.394 0.0 0.1921 0.1921 0.1109 0.1109

0.2881 0.2881 0.0 0.196 0.1139 0.1139

0.2881 0.2881 0.196 0.0 0.1139 0.1139

0.2774 0.2774 0.1898 0.1898 0.0 0.066

0.2774 0.2774 0.1898 0.1898 0.066 0.0

(24)

Seven different numerical experiments have been performed. In each case, the starting point was

the view-factor matrix listed above. Random errors were then introduced by sampling a random-

number generator which produced normally distributed values. The difference in each experiment
resulted from the way that the variance of these random errors was assigned to the view factors. A

thousand view-factor trials were conducted for each case. This was followed by a thousand trials

where the areas were varied randomly. In all of the following, covariance terms are assumed to be

negligible.

Equal Variance

The first numerical experiment considered the view factors to have equal variance with a view-
factor standard deviation of 0.01 and the areas to be fixed. Table 1 gives mean values of the heat

flux for several of the rectification schemes. Since the variances were all equal and the covariances

were assumed to be zero, the weighted least-squares optimum scheme and the unweighted schemes
are identical. The exact solution is computed using the view factors in equation (24) directly. Table

2 shows the standard deviations for the heat flux calculations and the root-mean-square average
standard deviation for each treatment.

Table 1. Mean Heat-Flux Values for Equal View-Factor Variance Case.

Least-Squares
Surface Not N.L.P. No Recti-

Nonneg. Nonneg. Nonneg. Leersum Naive fication Exact

1 -3.6273 -3.6030 -3.6036 -3.6231 -3.6570 -3.9179 -3.6891
2 83.9532 83.7224 83.7249 83.7249 83.9429 83.9205 83.8721
3 -120.4888 -120.1792 -120.1820 -120.4798 -120.3951 -120.3969 -120.5353

Table 2. Standard Deviations in Heat Flux for Equal View-Factor Variance Case.

Least-Squares
Surface Not N.L.P. No Reeti-

Nonneg. Normeg. Nonneg. L_rsum Naive fication

1 0.4374 0.3449 0.3447 0.6364 1.0005 10.2714
2 0.5776 0.4394 0.4398 0.8416 1.5774 11.8809
3 0.7272 0.5138 0.5148 0.9571 2.2777 12.3575

rms-avg 0.5927 0.4382 0.4383 0.8225 1.7007 11.5379
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From Table 1, all of the rectification schemes seem to have means which are roughly equal to the
exact solution. Table 2 shows, however, that there is a large difference in the standard deviations of

the calculated heat fluxes. For surface 1, the case of no rectification has a standard deviation which

is almost an order of magnitude larger than the rectified values. Figure 2 shows histograms of
surface-3 heat-flux distributions for each rectification scheme and for no rectification.

The tables and figure reveal that all of the rectifications are effective for this problem. The

nonnegative least-squares procedures are about twice as effective in reducing errors in the heat flux
calculations as Leersum's rectification which in turn is about twice as effective as the Naive

rectification. Among the least-squares, the nonnegative projection scheme and the nonlinear-

programming scheme yield almost identical results as expected, and the least-squares without

nonnegativity has very slightly larger errors in heat flux than its nonnegative counter parts.
Next, the view factors were set at the values given in equation (24) and the areas were varied

using a standard deviation of 1% for each area. Table 3 gives the standard deviations for the heat-

flux calculations and the rms average standard deviation for each treatment.

Table 3. Standard Deviations in Heat Flux for the Area Variance Case with Equal View-Factor
Variance.

Least-Squares
Surface Not Nonneg. Nonneg. Leersum Naive No Rectification

1 0.4414 0.5132 0.4601 0.2285 4.641
2 0.5281 0.4678 0.4225 0.4928 4.377
3 0.3211 0.3334 0.4915 0.8307 4.461

rms-avg 0.4385 0.4447 0.4586 0.5730 4.794

The table shows that with no rectification the area uncertainties result in considerable uncertainties in

the heat fluxes. However, when the view factors were rectified by enforcing closure and reciprocity
these uncertainties in heat flux are reduced by an order of magnitude. All of the algorithms give

about the same decrease in the sensitivity to area uncertainty for this case study.

Unequal Variance

Six cases were considered which contained unequal variance: 1) diagonal-dominated, 2) counter-

diagonal-dominated, 3) row-dominated, 4) column-dominated, 5) upper-triangle-dominated, and 6)
random variances. Depending on the location of the uncertainties in the view-factor matrix, the

relative success of the rectification schemes with respect to the sensitivity to view-factor uncertainty is

vastly different from that seen for equal variance.
For the diagonal-dominated case-study the view factors along the main diagonal are considered to

have standard deviations which are 100 times as large as the off-diagonal view factors. The standard-

deviation matrix corresponding to the view-factor matrix is
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Figure 2. Histogram of Surface-3 Heat Flux [watts/m 2] for Equal Variance Case.
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(25)

Tables 4 and 5 show the mean and standard deviations of the heat fluxes for 1000 trials where the

view factors in equation (24) were perturbed by values from a gaussian random number generator
with standard deviations given by equation (25).

Table 4. Mean Heat-Flux Values for the Diagonal-Dominated View-Factor Variance Case.

Nonnegative

Least-Squares

Surface Unweighted Weighted Leersum Naive Exact

I -3.4722 -3.6263 -3.4719 -3.6264 -3.6891

2 82.1136 83.8987 83.9797 83.9417 83.9417

3 -117.9622 -120.4087 -120.7616 -120.4729 -120.5353

Table 5. Standard Deviations in Heat Flux for the Diagonal-Dominated View-Factor Variance Case.

Nonnegative

Least-Squares
Surface Unweighted Weighted Leersum Naive

I 1.7256 0.0468 3.5462 0.1029

2 2.3167 0.0623 5.1518 0.1584

3 3.3123 0.0912 6.4956 0.2284

rms-avg 2.5374 0.0693 5.2061 0.1711

The rectification schemes are the unweighted and weighted nonnegative least-squares projection
methods, Leersum's method, and the Naive method. Figure 3 shows histograms for the heat-flux
distributions for surface 3.

For this case study, Leersum's rectification is seen to be the least effective at reducing errors in

the heat flux. The unweighted nonnegative least-squares projection is about twice as effective as

Leersum's scheme, but the weighted nonnegative least-squares projection is an order of magnitude
more effective. For this case, the Naive rectification is almost as good as the weighted least-squares

projection.

Recall that the Naive rectification scheme lumps all of the corrections into the diagonal elements
for closure enforcement while Leersum's scheme evenly distributes the corrections over all of the

nonzero values. Therefore, when the view factor variance is mostly along the diagonal, we expect
the Naive scheme to perform well and Leersum's to not perform well. When the variances are all

equal, Leersum's is expected to perform well, as it did in the previous case study.
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Figure 3. Histograms of Surface-3 Heat Flux [watts/m 2] for the Diagonal-Dominated Case.

Figure 3 shows that there is a considerable skew to the heat flux distributions for the nonnegative

least-squares cases. It is believed that this is caused by the nonnegativity constraints. The diagonal
elements of the view-factor matrix have nominal values which are zero; therefore, the Monte-Carlo

procedure will produce many negative diagonal view factors that are then set to zero.
For the area uncertainties, a random perturbation is added to the view-factor matrix using a

gaussian random-number generator with the standard deviations given above. The F-matrix is then

frozen and the Monte-Carlo analysis is performed for the area uncertainties using a gaussian random-

number generator and area standard deviations equal to 1% of each area. Table 6 shows the standard
deviations for the resulting heat-flux calculations.
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Table 6. Standard Deviations in Heat Flux for Area Variance with Diagonal-Dominated View-Factor

Error.

Nonnegative

Least-Squares
Surface Unweighted Weighted Leersum Naive

1 0.4462 0.3718 0.4197 0.2298

2 0.5079 0.5679 0.3978 0.4840

3 0.3160 0.4742 0.5208 0.8534

rms-avg 0.4309 0.4781 0.4493 0.5818

As seen above, all of the rectification schemes have about the same effect on sensitivity to area

uncertainty.

The same procedure is followed for the other unequal variance case studies. For all of the cases

with regional dominance, the base view-factor standard deviation is 0.001, and the value in the

dominate region is 0.1. For the counter-diagonal-dominated case, the larger values of standard

deviation are obviously along the counter diagonal. For the row-dominated and column-dominated

cases, the larger values are on the second row and second column respectively. For the upper-

triangle-dominated case, the six elements in the upper-right corner have the larger values. For the

random-variance case, the standard deviations were assigned randomly in the range 0-0.1.

Table 7 shows the mean heat flux values, and Table 8 shows the standard deviations of the heat

fluxes for the various I000 trial Monte-Carlo studies. The tables reveal that the weighted nonnegative

Table 7. Mean Heat-Flux Values for the Other Unequal View-Factor Variance Cases.

Nonnegative

Least-Squares

Surface Unweighted Weighted Leersum Naive Exact

Counte_Diagonal-DominatedView-Factor Varance
1 -3.5645 -3.6229 -3.4449 -3.1886 -3.6891

2 82.2329 83.9206 83.0833 83.8364 83.8721

3 -119.5026 -120.4466 -120.4577 -120.4717 -120.5353

Row-Dominated View-Factor Variance

1 -2.7005 -3.6096 -2.6789 -1.7829 -3.6891
2 82.0741 83.9014 81.9244 79.4481 83.8721

3 -119.0604 -120.4378 -118.8689 -116.4979 -120.5353

Column-DominatedView-Factor Variance

1 -2.6462 -3.6033 -3.7737 -3.5184 -3.6891

2 81.8186 83.8880 83.7971 83.8305 83.8721

3 -118.7586 -120.4271 -120.0350 -120.4682 -120.5353

Upper-Tnangle-DominatedView-Factor Variance
1 -3.5754 -3.6222 -3.3351 -3.3087 -3.6891

2 83.6157 83.9198 82.6190 80.2599 83.8721

3 -120.0605 -120.4450 -118.9259 -115.4267 -120.5353

Random View-Factor Variance

1 -3.2880 -3.2593 -3.3021 -2.0925 -3.6891

2 82.4014 82.7955 82.8567 80.3335 83.8721

3 -118.6701 -119.3044 -119.3318 -117.3613 -120.5353
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least-squaresprojection scheme is vastly superior to the others. Overall its mean heat fluxes most

closely agree with the exact values, and with the exception of the random-variance case, its standard

deviation is one to four orders of magnitude smaller than those for the other schemes. For the

random-variance case, the weighted least-squares scheme gives the best results, but the unweighted

least-squares and Leersum's schemes also give good results since the uncertainties are more-or-less

evenly distributed.

For some cases, the naive rectification scheme fails completely. Table 9 gives the range of

computed heat fluxes for the naive rectification with the upper-triangle-dominated view-factor

uncertainties. Clearly, any single heat-flux computation from this set is meaningless.

It should be noted that this is a terribly damaged view-factor matrix. For this case, the 95%-

confidence uncertainty in view factor is approximately 0.1, or the view factors are considered to have

approximately 1 digit accuracy. This would correspond to very crudely computed view factors.

However, properly rectified cases yield very meaningful heat flux computations.

Table 10 gives the rms averaged heat flux standard deviations for the area uncertainty Monte-

Carlo analysis. As seen before, all of the rectification schemes seem equally good at reducing the

sensitivity of the heat flux calculations to the uncertainties in the areas for this case study.

Table 8. Standard Deviations in Heat Flux for the Other Unequal View-Factor Variance Cases.

Nonnegative
_t-Squares

Surface Unweighted Weighted Leersum Naive

Counter-Diagonal-Dominated View-Factor Variance
1 0.5277 0.0368 1.4061 3.4348

2 0.6197 0.0460 2.0133 5.2123

3 0.8957 0.0563 1.6163 6.2030

rms-avg 0.6988 0.0470 1.6973 5.0810

Row-Dominated View-Factor Variance

1 1.7794 0.0477 3.6299 5.4372

2 2.7123 0.0630 7.0196 16.1912

3 2.5028 0.0618 5.8428 19.2367

rms-avg 2.3655 0.0579 5.6742 14.8523

Column-Dominated View-Factor Variance

1 1.9819 0.0550 3.9047 5.1064

2 3.5176 0.0819 4.8266 5.2548

3 3.4125 0.0701 3.9496 0.3175

rms-avg 3.0521 0.0699 4.2482 4.2343

Upper-Triangle-Dominated View-Factor Variance

1 0.2454 0.0353 2.0937 11.0725

2 0.3273 0.0438 1.9262 22.9427

3 0.4017 0.0535 2.2979 43.0558

rms-avg 0.3310 0.0448 2.1114 28.8835

Random View-Factor Variance

1 2.6444 2.0461 4.7752 14.7834

2 2.6682 2.0091 6.1736 17.8497

3 2.4439 1.7696 5.3161 15.3694

rms-avg 2.5875 1.9454 5.4521 16.0560
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Table 9. Range of Naive Heat-Flux Values for the Upper-Triangle-Dominated Variance Case.

Surface 1 2 3

max 38.9123 106.9031 991.5615
mean -3.3087 80.2599 -115.4267
min -281.7724 -389.7757 -205.6421

Table I0. Root-Mean-Square Averaged Standard Deviations in Heat Flux for Area Variance Cases
with Other Unequal View-Factor Variance.

View-Factor Variance Case

Nonnegative
Least-Squares

Unweighted Weighted Leersum Naive

Counter-Diagonal 0.4397 0.4395 0.4605 0.5556
Row-Dominated 0.3916 0.4721 0.3570 0.4075
Column-Dominated 0.4071 0.4461 0.4417 0.5859
Upper-Triangle 0.4386 0.4432 0.4748 0.5556
Random 0.4243 0.4565 0.4355 0.5734

CONCLUSIONS

Several view-factor rectification schemes have been compared. Figure 4 summarizes the rms-

averaged standard deviation results for heat flux when view-factor uncertainty is considered. The
Naive scheme, where all of the corrections are placed in the diagonal elements of the view-factor

matrix, has proven to be erratic and sometimes results in meaningless calculations. Leersum's

iterative scheme is also erratic but, on average gives considerably better results than the Naive

scheme. Leersum's scheme is most viable when the view factors have equal variance. The

unweighted version of the normegative least-squares projection scheme is better behaved than either

the Naive or Leersum's scheme; however, when the view-factor variance is not equally distributed,
the unweighted nonnegative least-squares projection is consistently superior for all cases. In the eases

where the variances were not equally distributed the weighted nonnegative least-squares projection
gives heat-flux results which were orders of magnitude better than the other schemes.

The Naive scheme is not recommended. If no knowledge on the relative sizes of the view-factor

variances is available, either Leersum's scheme or the unweighted nonnegative least-squares

projection will take fairly crudely calculated view factors and compute meaningful heat transfer

results. The least-squares projection is recommended since the computational tasks are roughly
equivalent and it is about twice as effective. If information is available on the relative variance of the

view factors (which is always the case for Monte-Carlo integrations), the weighted nonnegative least-
squares projection should be used.

The weighted nonnegative least-squares projection can be thought of as a numerical filter for

noisy view-factor data. In the examples given here, very good heat transfer calculations were made

for cases with very crudely defined view-factor data (roughly 1 digit accuracy). View-factor

calculations are the most computationally intensive part of many radiation enclosure problems. There

is the possibility of considerable improvement in computational efficiency by combining this excellent

filter with relatively crude computations of the view factor values. To properly make such a

compromise, sensitivity estimates [5] of the heat transfer calculations would be required.
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All of the schemes were roughly equal with regards to the propagation of uncertainties in the

surface areas. When the view factors were rectified in this case study, the heat flux uncertainties

were roughly an order of magnitude less than the case when no rectification was applied. The proper

weighting procedure for the enforcement of reciprocity with uncertain areas is a topic of current
research.
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SUMMARY

,-.>

Aerospace electronic boards require special attention to thermal management due
to constraints such as their need to be light, small, and maintain high power densities. Also,
cooling is mainly through conductive and radiative modes with minor or negligible
convective cooling. Due to these particular requirements, thermal design has become an
integrated part of the electronic design process in order to avoid expensive repeat
prototyping and to ensure high reliability.

To achieve high speed simulations, the BETAsoft code uses semi-empirical
formulations and an advanced finite difference scheme that incorporates local adaptive
grids. Detailed conduction, convection and radiation heat transfer is considered. Various
benchmark verifications of the software simulation compared to infrared images typically
prove to be within 10% of each other.

The thermal analysis of a sample avionic card in a natural convection environment

is shown. Then, the individual effects of attaching metal screws to the casing, increasing
radiative emissivities of the casing, increasing the conductance of the wedge lock, adding
an aluminum core to the board, adding metal strips in board layers, inserting conduction
pads under components, and adding heat sinks to components are demonstrated.

INTRODUCTION

With the trend of higher clock speeds and decreasing package sizes, the power
density of electronic boards have increased continuously in the last two decades (1). Higher
board power densities lead to higher component junction temperatures. Since the failure
rates of junctions generally increase exponentially with their temperatures (2), thermal
control thus becomes critical in achieving acceptable product reliability. Presently, more
than half of electronic failures are due to thermal problems. Thermal management has
has become an ever increasing concern of today's electronic designs.

Compared to the majority of electronic applications, those of the aerospace industry
present unique thermal concerns due to their environment and resulting modes of heat
transfer. Lower pressure leads to decreased convective flow and an increased need to

effectively use conductive and radiative cooling. Furthermore, testing aerospace boards is
usually difficult in terms of simulating the environment at reduced atmospheric pressures.

Due to the advances in numerical computations, thermal analysis software has

become the best solution for electronic designers. Thermal software lowers design cost by
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reducing the load of laborious prototyping tests. The thermal analysis results also provide
far more detailed technical information than the tests which are limited by the

instrumentation. Typically, software results include a temperature map and gradient of the
entire board as well as the individual casing and junction temperatures of every part. Due

to the speed software simulation, a significant amount of time is saved. This allows for
further examination of alternatives and shortens the time to market. As a result, thermal

analysis software is generally regarded as an integrated CAE tool with electronic CAD

software today.
Among the thermal analysis tools, two types of software are available: general and

specialized. Any general purposed heat transfer or CFD program can be used to simulate
the thermal performance of electronic boards. This general software, however, suffers on
the aspect of user friendliness. It is time consuming to set up a board or move a
component using any general purpose finite element program. This, in turn, prohibits the
effective analysis of a real board containing more than 20 components.

Specialized thermal software imports the board layout directly from CAD systems.
User-friendly menus to allow for modifications of the board with only a couple key strokes
and for quick and easy variation of the thermal environment. This allows for the setup time
to shorten to a couple hours and with alternative results obtained in a only few minutes.

Since thermal design generally requires an iterative process, this specialized software is the
standard tool used in electronic designs today.

The objective of this paper is to describe a unique semi-empirical approach to
thermal analysis which provides fast computation and high accuracy. This thermal software,
BETAsoft-Board, is used to illustrate the applications of a typical aerospace board in terms
of various parametric effects of design solutions and alternatives. Comparative advantages
of these alternatives are discussed and the results of their combined used as design solutions

are presented.

NUMERICAL MODELING

A straight forward approach of thermal analysis is to use the finite element scheme
for conduction and the Navier-Stokes equations for convection. Although this is the

approach used by many heat transfer programs, the obvious draw-back is the large memory
requirement and substantial computational time involved. This excludes the use of PCs for
sophisticated thermal designs.

A unique approach developed by Dynamic Soft Analysis, Inc. is the use of a modified
finite difference scheme for conduction and semi-empirical based equations for convection.

Significant effort has been devoted to this development. The end result is a fast yet
accurate thermal analysis. Since the equations involved are numerous, only a brief summary

of the modeling approach is described below.

Conduction:

Standard heat conduction equations are used in the computation (3). Finite

difference grids with local properties are applied to the board. Along the board edges, heat
transfer to wedge locks is implemented. Up to three physical board layers can be
considered. The components interact with the board through the individual leads as well
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as through the gap beneath a component. The board layers can be nonhomogeneous by
specifying local regions of varying volumetric fractions of metal. Furthermore, the
conductivities along the x and y directions of the board can be altered in localized regions

of each layer.
Since the components can be set on either side and any location on the board, the

modeling of conduction to the board is implemented through the use of locally refined

adaptive grids. Only at the locations where grid refinement is needed, further grids are
automatically generated. This scheme enhances the accuracy significantly while only slightly

increasing the computational burden.

Convection:

Three dimensional flow effects and thermal fields are considered in the convective

modeling. Although the experimental results and data correlations are well reported for
2 dimensional configurations (4), the consideration of detailed three dimensional effects
takes substantial effort. Vast amounts of literature on various data and correlations were

reviewed. It was found that frequent discrepancies appeared. As a result, a large amount
of in-house wind tunnel tests using various boards from regular arrays to irregular arrays

of components were conducted. Infrared results of components and boards were obtained
to check with the existing correlations and to create a new set of correlations. To cover a

large number of variations, more than 40 equations are employed.
For each component, the different heat transfer from each exposed side is calculated

based upon its local flow and thermal environment. The convective heat loss from the
leads is modelled. The effects of flow diversion, thermal boundary layer, heat sink fins, and

adjacent boards or casings are also considered. Natural convection can be calculated.
When there is forced convection, the combined convection is considered.

Radiation:

Radiation is very important in aerospace applications. The surface emissivities of
individual components and of the boards can be assigned. The radiation between the
components and the board underneath is precisely modeled in the computation. The
radiation between a component and the opposite board is closely simulated. Lastly, the
minor radiative interaction with adjacent components is approximated.

Integration:

Both the geometric configuration and thermal environment of the board are tightly

integrated with other CAD and CAE programs. The BETAsoft-Board program interfaces
with more than 20 different CAD placement programs to transfer the board layout directly
into the board thermal analysis, saving a significant amount of set up time. The thermal
environment of the board can be transferred from the BETAsoft-System program which
determines the incoming air velocity and temperature as well as the spacing and conditions

of adjacent boards. BETAsoft-Board solves for the detailed thermal environment of each
individual component. This information can be transferred to the BETAsoft-Component

program for an in-depth component packaging analysis.
Furthermore, the junction temperatures from the Board thermal analysis interface
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to popular reliability analysisprograms. This later allows for a very accurate reliability
report.

RESULTS AND DISCUSSION

The BETAsoft-Board program has been in existence and under constant
improvement for more than 7 years. Hundreds of leading companies worldwide use
BETAsoft as an integral part of their design process. From the large number of
comparisons with in-house and users' tests, an error range of within 10% has been generally
observed. This includes computer mother boards, military backpacks, avionic boards,
satellite boards, industrial control boards, etc. for a wide range of operational conditions.

A typical infrared comparison is shown in Fig. 1 and data comparison in Table 1.
To illustrate thermal management techniques, an avionic board case is considered.

The board layout has been automatically transferred from PCAD. As shown in Fig. 2, the
transformer has a power of 3 watts; and the components along top edge of board and one
near the bottom middle are 1 watt each. All of the remaining components are low power.

For this case, the environment conditions were an ambient temperature of 30"C and

natural convection at .9 atmospheres of pressure. The objective of the present thermal

design is to make sure all component casing temperatures are under 95"C to achieve the
overall reliability requirements.

For this board in a natural convective environment, the casing temperatures of the
transformer and 3rd component in at top are 184.6"C and 139.6"C, respectively. The
computation time for this board is only 3 minutes on the PC platform and less than 1
minute on the workstation. The temperature contour is shown in Fig. 3 and the component

temperatures are shown in Fig. 4. Some thermal design considerations to reduce the
component casings in excess of 95"C are exercised in the following parametric studies:

Screws Attached to the Case:

A very common situation is the attachment of the board to the cold casing with
screws. Five screws are used, each has a thermal resistance of 60*C/Watt. The sink

temperature is at 30"C. The resulting temperature of the two components are 172.9 and
133.7"C respectively for the transformer and component CR25.

Surface Emissivities:

Since the board is hot and the case is cool (at 30"C), it is possible that the radiative
heat loss can be increased by changing the inner casing emissivity from 0.05 (a bright metal)

to 0.8 by applying an organic coating. The resulting temperature reduction is from 172.9°C
to 125.0"C for the transformer and from 133.7 to 112.9"C for CR25.

As expected, surface emissivity plays an important role, especially for a hot board
in a naturally convective environment. Plus, the change from .05 to .8 is a large magnitude
for emissivity.
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Wedge Lock Resistance:

The thermal resistanceof the wedge lock can be varied. Changing the thermal
resistance from 1 to .2 (*C inch/Watt) reduces the temperatures of the transformer from
125.0 to 123.7"C and CR25 from 112.9 to 108.5"C. There are some minor effects but they
are not substantial for this range of resistance. Whether a wedge lock exists or not would
have substantial effects.

Metal Core:

A very common approach is to add a metal core to the board. An aluminum metal
core of .01" thickness has been applied to bring the heat from the hot components to the

wedge lock. The results (with the new wedge lock resistance) show reduction of the
temperatures of the transformer from 123.7 to 93.1"C and CR25 from 108.5 to 75.6"C. This
appears to be a very effective means to cool the board.

Local Metal Strips:

For space applications, the weight of the board is very important. The aluminum
core is effective but adds a lot of weight. An alternative is to use only strips of metal core

to bring heat from the high power components to the wedge lock. The is done as shown
in Fig. 5. The resulting temperature increases slightly from 93.1 to 99.9"C for the
transformer and from 75.6 to 76.9"C for CR25. However, the weight of the strips are only

12% of the metal core.

Conduction pads:

Although the local board temperature has been reduced, the temperature of the hot

components are still much higher than the board. This is because the high thermal
resistance between the component and the board. This usually occurs when the component
leads are few and thin while a gap exists underneath the component. This gap serves as
a thermal resistance. To reduce this resistance, conduction pads (with conductivity .22

W/*C m) have been installed between the high power components and the board.
The resulting temperatures of the transformer and the CR25 are 84.7 and 61.2"C,

respectively. Thus the addition of conduction pads have resulted in a significant

temperature drop.

Heat Sink on Component:

The top row of 1 watt parts and the transformer are now within the desired range.
However, the 1 watt part at the bottom edge is still well above the allowed value. A final
resolution is the addition of a heat sink on top of this hot IC component. Since this part

is located at the lower edge where it would be hard to be cooled with a metal strip to the

top edge, a pin-fin heat sink is added to its top. As indicated by the manufacturer's catalog,
this sink has a thermal resistance, Theta-sa, of value 6 *C/Watt at 3 ft/s air velocity and 3

*C/Watt at 10 ft/s velocity. The resulting temperature of this component is reduced from
107.6 to 69.9"C.
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The overall temperature profile of the board is shown in Fig. 6. The resulting
component temperatures are shown in Fig. 7. There are no parts beyond the desired
values in the component map. The thermal designis now successful.

CONCLUSION

Aerospace electronic boards present special needs for thermal management.
Although "general purpose" heat transfer programs may be used for thermal design, they
typically are not user friendly and efficient since thermal is not their main function.
"Specialized" thermal analysis software is effective because it is designed exactly for that one

function. Also, the available integration to board layout, system thermal analysis,
component thermal analysis, and reliability analysis software is an important consideration
for concurrent engineering.

An unique approach using finite difference and semi-empirical formulations are
demonstrated through the BETAsoft-Board program. This approach provides a fast
computation while maintaining accurate solutions.

For aerospace thermal designs, the combined use of emissivities, wedge lock
resistance, metal strips, conduction pads etc. allows for an effective thermal control which
leads to high reliability of the products.
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a. Infrared
Figure 1 b BETA.soft

Table 1

Component # Infra_ BETA.soft

6

7

8

9

10

11

12

54.6

49

52.5

50.5

47.5

46.0

48.9

47.5

47.5

48.9

47.5

50.5

56.3

48.5

51.5

48.9

46.6

46.9

46.2

48.3

49.2

48.7

45.1

50.5

Figure 2
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The numerical model for a rocket thermal analysis code (RTE) is discussed. RTE is a

comprehensive thermal analysis code for thermal analysis of regeneratively cooled rocket en-

gines. The input to the code consists of the composition of fuel/oxidant mixture and flow rates,

chamber pressure, coolant temperature and pressure, dimensions of the engine, materials and

the number of nodes in different parts of the engine. The code allows for temperature variation

in axial, radial and circumferential directions. By implementing an iterative scheme, it pro-

vides nodal temperature distribution, rates of heat transfer, hot gas and coolant thermal and

transport properties. The fuel/oxidant mixture ratio can be varied along the thrust chamber.

This feature allows the user to incorporate a non-equilibrium model or an energy release model

for the hot-gas-side. The user has the option of bypassing the hot-gas-side calculations and

directly inputting the gas-side fluxes. This feature is used to link RTE to a boundary layer

module for the hot-gas-side heat flux calculations.

INTRODUCTION

Thermal analysis is an essential and integral part in the design of rocket engines. The

need for thermal analysis is especially important in the reusable engines where an effective

and efficient cooling system becomes a crucial factor in extending the engine life. In the

new high pressure engines, such as chemical transfer vehicle engines, hot-gas temperature is

very high (can reach 7000R at the throat). It is therefore essential to be able to estimate

the wall temperature and ensure that the material can withstand such high temperature.

Furthermore, an accurate thermal model enables an engine designer to modify the cooling

channel configuration for the maximum cooling at high temperature areas.

The thermal phenomena in rocket engines involve interactions among a number of processes.

including, combustion in the thrust chamber, expansion of hot-gases through the nozzle, heat

transfer from hot-gases to the nozzle wall via convection and radiation, conduction in the

wall, and convection to the cooling channel. Further complexities of the thermal analysis

in rocket engines are due to three-dimensional geometry, coolant and hot gas heat transfer

coefficient dependence on the pressure and wall temperature, unknown coolant pressure drop

and properties, axial conduction of heat within the wall. and radiative heat transfer between

gases and surfaces of the engine. A comprehensive thermal model must account for all of these

items.

RTE [1] is a comprehensive rocket thermal analysis code that uses a number of existing

codes and allows interaction among them via some iterative procedures. The code is based

on the geometry of a typical regeneratively-cooled engine similar to that shown in Figure

1. It uses CET (Chemical Equilibrium with Transport Properties) [2] and GASP [3] for the
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evaluationofhot-gasandcoolantproperties.Theinputsto this code consist of the composition

of fuel/oxidant mixtures and flow rates, chamber pressure, coolant entrance temperature and

pressure, dimensions of the engine and materials in different parts of the engine, as well as

the mesh generation data. This program allows temperature variations in axial, radial and

circumferential directions, and by implementing an iterative scheme it provides temperature

distributions, rates of heat transfer, and hot-gas and coolant thermal and transport properties.

The fuel/oxidant mixture ratio can be varied along the thrust chamber. This feature allows the

user to incorporate a nonequilibrium model or an energy release model for the hot-gas-side. The

mixture ratio along the thrust chamber is calculated using ROCCID [4] (ROCket Combustor

interactive Design and Analysis Computer Program). ROCCID has been modified to take RTE

input and make the mixture ratio variable along the thrust chamber. The user has the option

of bypassing the hot-gas-side calculations and directly inputting gas side fluxes. This feature

is used to link RTE to a boundary layer program for the hot-gas-side heat flux calculation.

The procedure for linking RTE to a hot-gas side program. TDK [5] (Two-Dimensional Kinetics

Nozzle Performance Computer Program) is described here.

__ /-" COOLINGA N I CKEL --_', / CtlANNEL 7

\ /
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SECTION A-A

Figure 1. A Rocket Thrust Chamber and Nozzle

NUMERICAL MODEL

The numerical model of the RTE is based on the geometry of a typical regeneratively-

cooled thrust chamber (shown in Figure 1). The waU can consist of three layers: a coating, the

channel, and the closeout. These three layers can be different materials or the same material.

The number of cooling channels in the wall are also specified by the user. For the numerical

procedure, the rocket thrust chamber and nozzle are subdivided into a number of stations

along the longitudinal direction, as shown in Figure 2. The thermodynamic and transport

properties of the combustion gases are evaluated using the chemical equilibrium composition

computer program developed by Gordon and McBride !2. 6] (CET, Chemical Equilibrium

with Transport properties). The GASP (GAS Properties) [3] or WASP (Water And Steam

Properties) [7] programs are implemented to obtain coolant thermodynamic and transport

properties. Since the heat transfer coefficients of the hot-gas and coolant sides are related to
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surfacetemperatures,an iterativeprocedureis usedto evaluateheattransfercoefficientsand
adiabaticwall temperatures.

STATION NURBERS
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Figure 2. A Rocket Thrust Chamber Subdivided into a Number of Stations

The temperature distribution within the wall is determined via a three-dimensional finite

difference scheme. In this method, finite difference grids are superimposed throughout the wall

at different stations. The temperature of each node is then written in terms of temperatures of

neighboring nodes (the four closest nodes at the same station and two nodes at the neighboring

stations). The program marches axially from one station to another. At each station the Gauss-

Siedel iterative method is used to obtain convergence for the temperature distribution along

the radial and circumferential directions. When the axial march is completed, comparison

is made between the results of the present march and that of the previous one to see if the

convergence criteria in the axial direction has been met. If it is not met. the code starts again

at the first station and makes another axial march. The process continues until convergence

is achieved. A detailed description of this numerical model is outlined below.

First, the static pressures, temperatures, enthalpies and Mach numbers for the combustion

gases are evaluated using the ROCKET subroutine from [2]. It should be noted that these

properties are independent of wall temperature and only depend on the cross-sectional area

of the nozzle, the propellant used and chamber pressure. Indeed, the heat transfer from hot

gases to the chamber and nozzle wall will cause very little change in the gas temperature (the

thermodynamic process dominates the transport process).

On the coolant side. the stagnation enthalpy and density at the entrance to the cooling

channel are evaluated as functions of the coolant stagnation pressure and temperature (leo =

ico(Pco, Tco) and pco = pco(Pco, Tco)) using the GASP or WASP programs.

The model now begins its axial marches (passes) starting from the first station. At the

first axial march an initial guess for the wall temperature distribution is made. For the next

march, however, the results of temperature distribution for the previous march can be used as

an initial guess. The hot gas and coolant adiabatic wall temperatures and wall properties can

be evaluated at a given station based on the assumed wall temperature distribution using the

properties computer codes [2, 6, 3, 7] for the combustion gases and the coolant. The reference

enthalpy of the gas side. iax,, is given by [8]
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lax. = 0.5(law. + ics.) + 0.180(ia0n - ics,_) (1)

where iGW. is a function of gas static pressure PGs. and gas-side wall temperature TGW. and

is evaluated using the program given in [2]. The gas-side adiabatic wall enthalpy, iGAW. is

calculated using the following equation [8, 9]

iGAW. = ias. + (PrGX.)I/3(iGO. -- iGS.)

where the gas reference Prandtl number Prax. is

(2)

Prcx.- Cp°x"lZcx" (3)
kGx.

Cpax., #GX. and kGX. are functions of PG$. and iGX.. Once the gas-side adiabatic wall

temperature is determined, the wall adiabatic temperature is calculated via

TGAW. = f(PGs.,iGAW.) (4)

and using the combustion codes [2, 6]. The hot-gas side heat transfer coefficient, ha. is given

by [8]

CG_kGX,,. 0.8 n 0.3

hG" -- dG. ttevx"rrGx" (5)

where Ca. is the gas-side correlation coefficient given as input and the Reynolds number is

defined by

Reax. = 4We TGS. (6)
7rda.PGX. Tax.

TGX. = f(PGs.,iGx.) (7)

7",'7,S,, = f(Pcs., its. ) (8)

Once the hot-gas-side heat trau_ier coefficient is determined the wall heat flux can be

evaluated via

qn = hG.(TGAW. -- TGW.) (9)

or

hG.
qn -- (iaAW. -- iaw.) (10)

CpGX.

The adiabatic wall temperature and gas-sideheat transfercoefficient,calculated from equa-

tions (4)and (5),or wall heat flux calculated using equations (9) and (10) will be used in the

conduction module to evaluate a revised wall temperature distribution. It should be noted

that the formulation given by equations (5-10) yields an approximate value for the wall heat

flux. To obtain a more accurate value for the wall heat fluxa boundary layer model should he

implemented. The procedure for interfacinga boundary layermodule to the present model will

be described later.Next, attention will be focused on calculating the coolant-side properties

and heat transfercoefficient.
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For the first station the coolant stagnation enthalpy, static pressure and static density

are set equal to the stagnation enthalpy, pressure, and density at the entrance to the cooling

channel (i.e., icol = ico, Pcsl = Pco and pcsl = pco). For the other stations, the coolant

stagnation enthalpy _s calculated via

ico. = ico._1 + (q_-i + qn-l)'-%S.-1,n (ii)
2We

where ASn-I,n is the distance between two neighboring stations n - 1 and n and q j-1 is the

heat transferred per unit length of the cooling channel from the hot gases to the coolant at

station n (calculated from the conduction subroutine at iteration j - t). For the first iteration

at station n, q_-i in equation (11) is not known; therefore the following equation is used to

evaluate the stagnation enthalpy

qn-IASn-l,n
ico. = ico.__ + (12)

Wc

Note that qn-1 in equations (11) and (12) are the heat transfer per unit length of cooling

channel at the previous station.

The coolant velocity is calculated from the following equation:

Wc
ycs. = (13)

PCS. A c. Nn

Note that pcs., isset equal to pco. for the firststation,and for the other stations isevaluated

using the GASP or WASP programs [3,7] based on the static pressure and enthalpy at the

previous iteration,i.e.,

j i-1 .j-1
Pcs. = P(P&s., 'cs.) (14)

At the first iteration, however, it is set equal to the static density of the previous station

(p s. = pcs,._,).
Once the coolant velocity is determined, the static enthalpy can be calculated using the

following equation:

(15)
ics. = icon 2geE

The coolant static and reference Reynolds numbers, respectively, are given by:

Wcdc. (16)
Recs. - Ac. Nn#cs_

and

\PCS. / \PCW./

where l_cs. isa function of PCS. and ics. and iscalculated using the GASP program [3],or

the \VASP program [7]ifthe coolant iswater. Note also that dc. is the coolant hydraulic

diameter at stationn. To employ a better value for the Reynolds number, an average Reynolds

number between the entrance and exit to each station isevaluated, i.e.,

ReCSA,,. = 0.5(Recs. + necs._,) (18)
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RecxA._. = 0.5(Recx,_ + Recx._l) (19)

The Reynolds number in the cooling channel is within the turbulent flow range; hence, the

Colebrook equation [10] is used to calculate the friction factor. This equation is given by:

1 ( e 2.5226 _ (20)-- -2.0 log 3.7065D ÷ RecxA.g. vrf]

This implicit equation has been shown to be very closely approximated by the explicit formula

[11]

1 e 5.0452 log 2.8257 + Re0.8981 l/ (21)
= -2.0log 3.7065D ReexA,g. eXAm9. ]J

The correlation given by equation (21) is only valid for straight channels. To include the

curvature effect, the friction factor obtained from equation (21) must be multiplied by the

curvature factor given by ItS's correlation [12]:

o] 112o
¢Cur. = ReCXA,9. \Rcur.n ! J

where re. is the hydraulic radius of cooling channel, Rcur.,_ is the radius of curvature. The
rc )2curvature factor given by equation (22) is valid when ReCXA,_. (_ > 6, otherwise, ever. =

1.

Once the friction factors are determined, the viscous pressure drop between stations n - 1

and n is calculated using Darcy's law [13] which is given by:

fn ( PCS,_ -[- PCS,_--I I (Vcs, _
(APcs,_,.,)I = _gc \ dc, + dc,_l I

and the momentum pressure drop is calculated via

+ Vcs,__l)2ASn-l,n (23)

1 1

An average value of variables between stations n and n - 1 are used to improve the accuracy.

The static pressure at each station is calculated based on the viscous and momentum pressure

drops and is given by:

PCS,, = PCS,,-, - [(APcs,,-i,,,)f 4- (APcs,__i,,i)M] (25)

Once the coolant static pressure is determined, the coolant wall properties which are functions

of the static coolant pressure Pcs_ and wall temperature, i.e.,

Cpvw, , _cw,, kcw, , low. = f (Pcs, , Tow.) (26)

are evaluated using the GASP or WASP programs. It should be noted that the wall temper-

ature is not constant at a given station; hence, three coolant wall properties which are based

on the lower, upper and side wall temperatures are determined. The reference and adiabatic

wall enthalpies at the station are, respectively, calculated from the following equations [8]
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icx, = 0.5(ics. + icw,) + 0.194(ic0, - ics,) (27)

and

iCAW, = ics, + (Prcx)t/3(ico, - iCS,) (28)

The adiabatic wall temperature is a function of the coolant static pressure and the adiabatic

wall enthalpy and is evaluated using the GASP program [3]. Note that the Prandtl number in

equation (26) is expressed by:

Prcx- Cpcx#CX (29)
kcx

where

Cpcx, _cx, kcx = f(Pcs, icx)

Three correlations may be used to evaluate the heat transfer coefficients in the cooling

channels. The simplest one is given by the following correlation (see [8. 9]):

n 0.8 nr0.4Nu = _C,_eCXY CX

Most recently, a new correlation is presented in [14, 15].

number is given by:

Nu _ Cc, Reo.T prO. 4
Nut

(30)

In this correlation the Nusselt

(31)

where

Nut = ¢-0.55

= I+7(Tw-Ts)

and

[!o.7---- pOT p- -p_--_(_)r

Properties for the above correlation are based on the coolant static temperature Tcs, and

static pressure Pcs. Correlations described by equations (30) and (31) give inaccurate results

when the coolant is liquid oxygen. A correlation, specifically for oxygen has been proposed

[16]. This correlation is given by:

, V j j

where Pcri = 731.4 psia is the critical pressure and

icw -- iCS

cp- Tow - Tcs
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The propertiesin the abovecorrelations are calculated using the GASP program [3], or the

WASP program [7] if the coolant is water. It should also be noted that there are three

coolant heat transfer coefficients and adiabatic wall temperatures. They are for the top, side.

and bottom walls of the cooling channel. The variable heat transfer coefficient is due to the

variable wall temperature in the cooling channel. The coolant reference and adiabatic wall

enthalpies are also functions of wall temperature and are larger for the surface nodes closer

to the bottom of the cooling channel. The correlation factors for the heat transfer coefficient,

Co,, in equations (30) and (31) are usually equal to 0.023 for most coolants. When the coolant

is liquid oxygen, however, a factor of 0.0025 is used in equation (32).

The correlations given by equations (30)-(32) are for fully developed turbulent flow in a

smooth and straight tube (channel). To include the effect of the entrance region, they are

multiplied by the following coefficient [17]:

(ELICE,u. = 2.88 \ _/-_-_ (33)

Other entrance effect factors for different types of cooling channel entrances reported in [17]

are given by:

CE, t. = 1 + \ _ ] (Tw/Tb) °'1 (34)

for a 90 ° bend entrance. Taylor [18] suggested the following correction factors:

CEn,. = (Tw /Tb)[I'SO/(E_=' A&.i+l/dc,)] (35)

for straight tube and

(E,=I A i,i+l (36)
CEnt. = (Tw/Tb) {I'a9/(E'=IA&''+'/ac'_)] 1 + 5/ \ -d-'_

for a 90 ° bend entrance. The correction factor for the curvature effect is given by [19]:

( rc_n _21 ±1/20 (37)
¢Cur. = RecxA_g. \Rear., / J

is the hydraulic radius of cooling channel, Rcur._ is the radius of curvature, the signwhere rc,

(+) denotes the concave curvature and the sign (-) denotes the convex one. To incorporate

the effect of surface roughness on the heat transfer coefficient, a simple empirical correlation

is suggested by Norris [20]:

_ : (as)
NUsmooth fsmooth

where n = 0.68Pr °'ms. For f/fsmooth > 4.0 Norris finds that the Nusselt number no longer

increases with increasing roughness.

Once the heat transfer coefficients and adiabatic wall temperatures for the hot gas and

coolant are evaluated, a finite difference model is used to re-evaluate the wall temperature

distribution. This model has been specifically developed for three-dimensional conduction in

a rocket thrust chamber and nozzle, as shown in Figure 1. Because of the symmetry of the

configuration, computations are performed for only one cell (see Figure 3). Since no heat is

148



NICKEL

!NSULAT ! ON

THKNS

COPPER

COOLING CHANNEL

CCH

/
/

TCOAT

Figure 3. A Half Cooling Channel Cell.

CLOSE-

OUT

AREA

(NRCLO)

TOP

CHANNEL

AREA

(NRCHT)

COATING

AREA LAND AREA

(NRCOAT) (NPHIL)

CHANNEL

AREA

(NPHIC)

BOTTOM

CHANNEL

AREA

(NRC_B)
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transferred to the two sides of the cell, they are assumed to be insulated. A finite difference

grid is superimposed on the aforementioned cell as shown in Figure 4. In this program the

number of nodes in the radial direction for different layers and in the circumferential direction

for the land and channel area must be specified. Thus, the grid size can vary from one layer

to another. Each node is connected to four neighboring nodes at the same station. It also

exchanges heat with its counterpoints at two neighboring stations (i.e., stations n + 1 and

n - 1). The finite difference equation for a node located in the middle of a material is given by

T l-1 JR

T_ . = T[+_,j,./R1 + T[]l_l,./R2 + T:-l,j,n/n3 + i,j+l,n/ 4 + Ti,j,n+l/R5 + Ti,j,n-1/n6
l_J,n

where

and

1/R1 + 1/R2 + 1/R3 + 1/R4 + 1/R5 + 1/R6

R1

( n-l,n n,n_-i l-1Ar _ASi, j -t- mSi_ j ) ki,j,n ki+l,j,n

(1 1)) ,,7R2 = +  Z)A¢ (nS" +
\ 2,3 -r ASi.j ki,J, n ki,j-l,n

n-l,n ASn.,.n+l_ _ + Z----F--R3 = Ar /kSi, j q- ,j ] ki,j, n ki_l,j, n

n-l,n . A_n,n+l'_ _ +

R_ "J 1 1- ,--7-27-_1+
2Ai,j,n k,d,n

ASn'-I'" ( )

,o 1 I
,-'7:y_i +

R6 = 2Aij,n-1 ki,j, n ki,j:n-1

(rZXCZXr)n+I + (ra_Ar),
Air,. = 2

(39)

(rA¢]\r)n --t- (r/_¢Ar)n_ 1

A,,i,n- 1 = 2

and I is the Gauss-Siedel iteration index. Note that the above equation is a three-dimensional

finite difference equation. The Gauss-Siedel iteration, however, is only performed for the

nodes on the n-th station and Ti,i,n,1 and Ti,j,n-1 are kept constant during this iteration.

The value of Ti,j,n-1 in equation (39) is from the recent march and Ti,i,n+l from the previous

march. The conductivity in equation (39) is a function of temperature, i.e., k = k(T). Similar

equations are derived for other nodes (boundary nodes and nodes at the interface between two
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Figure 5. Resistances between a typical interior node and its adjoining nodes.

conditions, convective and radiative terms also appear in the nodal balance of energy equation.

For example, for a node at the inner surface of the nozzle the finite difference equation is given

by

T _-1 "a T_Z:,j,.IR3 + TglR4 + T,,j,.+IIR_ + r_,j,.-_/R6 + Qr
T!. = T_+_,j,n/RI+ i,j-l,n/ 2+

IJ,n

where

R1 F

R2 =

R3 =

IlR1 + llR2 + llR3 + llR4 + llR5 + llR6

2T o (1 1)n,n+l) ,-'TST'-1 + l-1
Ar (ASi% -l'n + ASij J ki,j,n ki+l,j,n

1,n ASn,n+l_ ,-7:T-1 + l-1n- ki,j,n ki d- 1,n(r + -_)no aSz,j + _,: ]

^o.,n+_'_ _ + l-----i----
Ar (AR. n-. l'n + ki,j,n ki-l,j,n

\----zo zO ]

2
R4 =

hgrAo (AS n.Tl'n + Asn'n+l_
\ _J ',.1 ]

Rs-

R6--

A'qn'n_ 1 (

-i,j 1

2Ai,j,n ,-7:-f--1+
kid,n

A,_n- l,n (

-i,j 1
,-Tsi-_I + --

2Ai,j,n-1 ki,j, n

,)ki,j,n+l

1)kij,n_l
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Aid,n = 2

_-'_'-Jn+ [( tO+ n-1

A i,j,n-1 = 2

Note that equation (40) is used when hot-gas-side heat transfer coefficient is known and wall

heat flux is evaluated based on the temperature difference, i.e., equation (9). When wall heat

flux (qn) is known, equation (40) becomes

n,n+l Or] /(I/RI + l/R2 + l/R3 +l/R5 -k- 1/Re)qnAO(AS_ TM + ASij )/2 + (41)

where qn is wall heat flux which can be an input of the program or evaluated using equation

(10). Qr is the radiative heat transfer term which is evaluated based on the Discrete Exchange

Factor (DEF) method [21, 22, 23, 24] and is given by:

,,, ,.,n,n+ l _ . ,o [rn+2 m "_

Qr = AC)(ASi'5-1'n q- l"_Di'J )sznDn _ Z wstEs' DSISn + Z wgtEgtDGlSn - Es.) (42)
47r \l=l 1=1

Es. and Eg. are surface and gas emissive powers at stations n and are related to their tem-

peratures via

27rr 4

Esn = eorsi-:l_nTs n

Eg, = 4Kt,(l - w0)arr2T 4

DSISn and DGISn are total exchange factorsbetween differentialsurface and gas elements at

station l to a surface element at station n. The totalexchange factor between two elements

is defined as the fraction of the radiative energy that is emitted from one element and is

absorbed by the other element via direct radiation and multiple reflectionsand seatterings

from surfaces and gas. Procedures for calculating direct and total exchange factors in rocket

thrust chambers and nozzles are presented in [23]and [24].The radiative heat transfer term,

given by equation (42),evaluates the radiativeenergy coming to a surface node from allparts of

the engine. This isdone by numerical integrationof the radiativeenergy incident on the surface

at station n that isoriginated (emitted) from stationI.The weight factorsWs and wg are used

for numerical integration of surface and gas radiation along axial direction. If the stations

are equally spaced then the weight factors are the same as those of trapezoidal or Simpson

methods. In the present application,however, the stationsare more concentrated at the throat

area and are unevenly spaced. The rectangular numerical integrationmethod issuitable when

stations are not equally spaced and the weight factorsare equal to the width ofeach station,i.e.,

(A.qn-1'n+ AS'}_n+I)/2. Itshould be noted that the evaluation ofexchange factorsDSkSn and---i,j

DGkS'------_involvesmultiple integration (see [23]and 124])and requires significantcomputer time.

Values of these exchange factors depend on the geometry of engine and radiative properties

of combustion gases. Hence, they can be evaluated using external modules and the resulting
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exchangefactorsstoredin filesfordifferentengines.Thesefilescan then be used as inputs to the

RTE. A separate computer program, namely RTE_DEF (Rocket Thermal Evaluation_Discrete

Exchange Factor), has been developed for evaluation of the _otal exchange factors. Note

that the combustion properties code given by Gordon and McBride [2] does not provide the

radiative properties of combustion gases. These properties may be obtained from {25] and [26].

For example, if the fuel is R_P-1, the combustion gas species mole fractions are obtained from

the combustion code [5], containing 17%CO2, 30%CO, 33%H20.6%OH, 2.5%02, 3%H, 7%H2

and 1.5%O. Using an integrated average value of the absorption coefficients of these species.

the overall absorption coefficient is found to be ga = 2.5in -1.

Based on the revised wall temperature, new hot-gas and coolant wall properties, heat

transfer coefficients and adiabatic wall temperatures are calculated using equations (1) through

(42). Again, a new wall temperature distribution based on the most recent heat transfer

coefficients and adiabatic wall temperatures is calculated using the finite difference subroutine

for heat conduction within the wall. This procedure is repeated until the relative difference

between the temperature distribution of two consecutive iterations becomes negligibly small.

After the results for station n converge, the coolant Mach number and entropy as functions

of static pressure and enthalpy (Mc,, sc_ = f(Pcs_, ics,,)) are evaluated using the GASP

or WASP programs. Next, the coolant stagnation pressure is evaluated based on the coolant

entropy and stagnation enthalpy, i.e., Pco,, = P(ico_, sc,). The GASP and WASP programs

do not have explicit expressions for pressure in terms of entropy and enthalpy. Thus, an

implicit relation for stagnation pressure (i.e., sc,, = s(Pcon, ic,)) with the secant method for

solving nonlinear equations is used to determine Pv0n. In the secant method, two initial guesses

for the stagnation pressures were made (P1 = Pco,_I + 20 and P2 = Pco,,_I - 20) and the

corresponding entropies sl and s2 were determined. The secant method's iterative equation is

given by:

Pk-l--Pk
Pk+l = Pk - sk (43)

8k-1 -- $k

where k is the iteration index. When equation (43) converges (the convergence criterion is

Isk - se,_l < 0.0001), the coolant stagnation is set equal to the latest value of Pk. Finally, the

coolant stagnation temperature is determined based on the coolant stagnation pressure and

enthalpy (Tco,_ --- T(Pco,, ico,_)).

The program then marches axially and performs similar calculations (i.e., equations (1)

through (43)) for all stations. Once the results of the last station (station m) converged, the

results of this march are compared to those of the previous march. If the relative differences

between the results of two consecutive marches is less than the axial convergence criterion the

program stops, otherwise it continues its axial marches until convergence is achieved. The

effect of axial conduction can be eliminated by setting the axial convergence criterion greater

than one or setting the maximum number of passes equal to one. A complete flow chart of

RTE is presented in [1].

The method described here, i.e., axial marches along axial direction, has several advan-

tages over the direct solution of a three-dimensional finite difference formulation. First, it

converges very quickly. Second, it requires less memory. Third. it allows the user to control

the importance of axial conduction by allowing for different convergence criterion between
the axial and radial and circumferential directions. For example, in analysis of a thin-walled.

radiatively-cooled, low-pressure engine, axial conduction is negligible. In this case one might

set the convergence accuracy to 5% in the axial direction and 0.1% in the other directions. In
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the case of a thick-walled, regeneratively-cooled, high-pressure engine, axial conduction may

be significant. Thus, the accuracy in the axial direction may be set to 0.1% and 0.1% in the

other directions.

Results of a Typical Run

RTE is used to determine the temperature distribution and heat transfer characteristics of

a Liquid Oxygen/Liquid Hydrogen rocket engine. The engine has the following specifications:

Fuel

Oxidant

Coolant

Chamber stagnation pressure PGo

Coolant stagnation pressure Pco
Fuel flow rate

Coolant flow rate

Fuel/Oxidant Mixture ratio

Coolant stagnation temperature

Number of cooling channels

LH2

LO2

LH2

1600 psi

2400 psi

35.412 lb/sec

5.059 lb/sec
5.9957

110 R

100

The engine is subdivided into 29 stations. Table 1 shows dimensions of the engine and

some thermal characteristics at each station (see Figure 3 for notation). Note that dimensions

given in Table 1 are in inches. Also, DCIN = 0.035 in. remains constant along the engine.
The outer surface radiates to space and its emissivity is 0.9. The thermal conductivities of

wall materials, i.e., nickel and copper are functions of temperature.

The resulting wall temperature distributions for stations 1, 9, 16 and 29 are shown in

Figure 6. A close examination of the temperature distributions reveals that the temperature

gradient is relatively large in radial direction , especially for station 9. This may also be true

for any other high pressure thrust chamber. Also, the results shown in Figure 6 can be used

to optimize the cooling channel aspect ratio. For example, there is no temperature gradient at

the upper section of the cooling channel in Figure 6a (station 9, throat). Hence, the cooling

channel can be shorten slightly without changing the overall heat transfer to the coolant.

HOT-GAS-SIDE BOUNDARY LAYER ANALYSIS INTERFACE

The convective heat transfer coefficients and heat fluxes for the hot-gas-side of the RTE are

evaluated based on a tube-like correlation [8], see equation (7). To obtain more accurate results,

RTE can be linked to a nozzle flow and boundary layer analysis program. The procedure for

linking RTE to TDK (Two-Dimensional K__.ineticsNozzle Performance Computer Program [5])
is described in this section. A similar approach may be implemented to link RTE to other

nozzle boundary layer analysis programs.
The flowchart for the iterative procedure for linking RTE to TDK is shown in Figure 7. In

this approach, initially, the wall fluxes and temperatures are evaluated by running RTE under
an unknown wall heat flux condition. In this run, RTE uses it internal hot-gas-side routines.

The wall temperatures calculated by RTE are then used in the inputs of TDK. Using one

of TDK's boundary layer modules (BLM or MABL)[5], a new wall heat flux distribution is
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Figure 6. Temperature distribution at stations a) 1, b) 9, c) 16 and d) 29.
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evaluated. The wall heat flux distribution is inserted into the RTE inputs. This time, since

the hot-gas-side heat fluxes are known, RTE bypasses all hot-gas-side calculations (e.g., its

CET subroutine and hot-gas-side heat transfer coefficient correlations) and calculates the wall

temperature distribution. The new wall temperature distribution along the axial direction is

then input to TDK and a new heat flux distribution is calculated. This iterative procedure

continues until convergence is reached.

r ,
RTI" inl,ut (RTE.INP) J .... i

- R'x'E._

Unknown wall fluxes 1___

jl\

TDK RTE.f

Check Convergence " TDK output

"% k

RTE TDK.f

: T1)K.f

lTDK input

Without wall temperatures

(From C-shell argument)

Figure 7. Flowchart of RTE-TDK Interface.

The RTE-TDK model is used to predict wall heat fluxes and temperatures of the LO/LH

engine presented in the previous section. The resulting wall heat flux and temperature distri-
butions for both RTE and RTE-TDK calculations are shown in Figures 8 and 9. As shown

in these figures, the heat flux and temperature distribution when the boundary layer module
is used are consistently below those calculated via hot-gas-side heat transfer coefficient, i.e..

equation (5). The reduction of heat flux and temperature is due to the relaminarization of

accelerating flow.
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Table 1: Parameters of thrust chamber and nozzle at different stations.

Station X DG CCW CCH THKNS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

3.55 6.978 0.05 0.133 0.368
2.75 5.898 0.05 0.123 0.358

2.0 4.886 0.05 0.113 0.348

1.4 4.076 0.05 0.104 0.339

0.9 3.402 0.05 0.1 0.335

0.559 2.942 0.04 O. 1 0.335

0.3 2.692 0.04 0.1 0.335

0.1 2.610 0.04 0.1 0.335

0. 2.6 0.04 0.1 0.335

-0.1 2.608 0.04 0.1 0.335

-0.274 2.656 0.04 0.1 0.335

-0.506 2.746 0.04 0.1 0.335

-0.906 3.924 0.05 0.1 0.335

-1.306 3.092 0.05 0.1 0.335

-1.706 3.264 0.05 0.104 0.339

-1.906 3.344 0.05 0.113 0.348

-2.106 3.432 0.05 0.123 0.358

-2.306 3.516 0.05 0.125 0.36

-2.506 3.602 0.05 0.125 0.36
-2.906 3.77 0.05 0.125 0.36

-3.306 3.94 0.05 0.125 0.36

-4.106 4.236 0.05 0.125 0.36

-4.506 4.358 0.05 0.125 0.36

-5.506 4.6 0.05 0.125 0.36

-6.506 4.744 0.05 0.125 0.36

-7.572 4.8 0.05 0.125 0.36

-8.35 4.8 0.05 0.125 0.36

-9.0 4.8 0.05 0.125 0.36
-9.875 4.8 0.05 0.125 0.36

CONCLUDING REMARKS

The numerical model for a rocket thermal analysis code (RTE) has been discussed. This

model allows temperature variation along three directions: axial, radial and circumferential.

The numerical results presented show that there is a large temperature gradient in the axial

direction for engines with a high chamber pressure. The resulting wall temperature distribution

can be used to optimize the cooling channel aspect ratios

The RTE needs to be modified further to incorporate a wide range of cooling channel shapes

and a CFD model for the cooling channel flow analysis. Efforts are presently under way to

include these items in the RTE.
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NOMENCLATURE

A

C

Cp
d

DGkSn

DSkS.

e

E

f

gc

h

i

J

k

Kt

m

N

P

Pr

q

Q_
r

RCur.

R_

Re

8

T

V

W

W

X

area

correlation factor for heat transfer coefficient

specific heat

diameter

total exchange factor between gas and surface differential elements

total exchange factor between two surface differential elements

cooling channel surface roughness

surface and gas emissive power

friction factor

gravitational constant. 32.2 ft.lb,_/lbf.s 2

heat transfer coefficient

enthalpy

work/heat proportionality factor

conductivity

total extinction coefficient

total number of axial stations

total number of cooling channels

pressure
Prandtl number

heat flux

radiative heat transfer at inner surface

radius

radius of curvature

thermal resistance

Reynolds number

entropy

temperature

velocity

weight flow

weight factor for discrete exchange factor method

station position in longitudinal direction

Greek Symbols

3

AS

Ap

Ar

A¢

P

angle between a vector normal to the nozzle surface and axial direction

length of cooling channel between two stations

pressure drop

radial mesh size

circumferential mesh size

convergence criteria or error limit

dynamic viscosity
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P

cr

density

Stefan-Boltzmann coefficient

entrance and curvature effect correction factors

Subscripts

A

Avg.

C

Cur.

?
G

i

J
k

M

n

r

S

8

W

X

0

adiabatic

average
coolant

curvature

viscous or friction

gas
node i

node j

secant method iteration number

momentum

related to station n

radiation

static

surface

wall

reference

stagnation

Superscripts

J
l

n

iteration number

iteration number for conduction model

related to station n
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SUMMARY

The critical state of vortex cores downstream of vortex breakdown has been studied. Base vortical

flows were computed using the Reynolds-averaged, axisymmetric Navier-Stokes equations. Stan-

dard K - e, RNG and second-order Reynolds stress models were employed. Results indicate that

the return to supercriticality is highly dependent on the turbulence model. The K- e model pre-

dicted a rapid return of the vortex to supercritical conditions, the location of which showed little

sensitivity to changes in the swirl ratio. The Reynolds stress model predicted that the vortex

remains subcritical to the end of the domain for each of the swirl ratios employed, and provided

results in qualitative agreement with experimental work. The RNG model produced intermediate

results, with a downstream movement in the critical location with increasing swirl. Calculations

for which area reductions were introduced at the exit in a subcritical flow were also performed

using the Reynolds stress model. The structure of the resulting recirculation zone was altered sig-

nificantly. However, when area reductions were employed within supercritical flows as predicted

using the two-equation models, no significant influence on the recirculation zone was noted.

INTRODUCTION

Over the past 30 years, considerable effort has been expended toward an understanding of the

mechanisms inherent in the development and evolution of longitudinal vortices. This has been

motivated, in part, by the desire to control and/or disable these vortices in applications such as the

aircraft-wake-vortex hazard and submarine non-acoustic stealth. Perhaps in no application are the

properties of swirling flows exploited to a greater extent than in the operation of gas turbine and

industrial furnace combustion chambers. Here, a region of high swirl is induced at an entrance to

the combustor liner, typically through a set of swirler vanes, resulting in a region of recirculating

flow. This region acts as a fluid dynamic flamehoider, providing a region of low velocity within

which combustion may be sustained, and recirculating hot, unburned gases to the base of the

flame.
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This recirculating region is known as a vortex breakdown. Although several theories have

been put forth to explain the breakdown phenomena, perhaps none are more widely recognized

than the early works of Squire [1] and Benjamin [2]. By choosing certain functional forms for the

base vortex flow, Squire reduced the nonlinear equations of motion (inviscid, steady) to a linear

disturbance equation. He subsequently solved the equation to determine conditions under which a

steady perturbation to the flow could exist. This condition, in terms of a swirl ratio, was taken as a

limiting condition for which breakdown could occur. Benjamin examined this phenomena from a

different perspective. He considered vortex breakdown to be a finite transition between two

dynamically conjugate states of flow, similar to the occurrence of a hydraulic jump in open chan-

nel flow. The two states were a subcritical state, which was defined as a flow which could support

standing waves, and a supercritical state, unable to support standing waves. In this context, the

work of Squire defined a critical condition marking the interface between the two states.

The criticality condition has not received much attention from those computing numerical

solutions to swirling flows, and flows containing vortex breakdown in particular. Of special inter-

est is the region downstream of the breakdown. Immediately downstream, the flow is most assur-

edly subcritical (c.f. Tsai and Widnall [3]). However, as the axial velocity recovers and the swirl

velocity decays, the flow may return to a supercritical state at some downstream location. The

consequences of the failure of a swirling flow to return to supercriticality has been discussed by

Escudier and Keller [4]. In that experimental study, it was shown that the upstream influence of an

exit contraction on vortex breakdown was substantially greater when the flow remained subcriti-

cal compared to a flow that reverted to supercritical (upstream of the contraction). Escudier and

Keller suggest that this phenomena might have significant consequences in the imposition of

accurate outflow boundary conditions.

Most swirling flows of practical interest, such as the flow within a combustor, are turbu-

lent. For numerical calculations of turbulent swirling flows, the choice of turbulence model is of

vital importance. It is well known that the standard K- _ model does a poor job of predicting

strongly swirling flows (c.f. Jones and Pascau [5]). One of the consequences of choosing the

K- _ model is that the wake region near the vortex centerline (downstream of breakdown) recov-

ers much more rapidly than has been shown to occur in experiments. On the other hand, second-

order closure models contain the physics necessary to model strongly swirling flows, and tend to

do a better job of predicting the recovery of the axial velocity component (c.f. Jones and

Pascau [5]).

These varying predictive capabilities have consequences in terms of the criticality of the

flow. That is, one would expect the K - t model to predict a return to criticality upstream of the

position predicted by second-order Reynolds stress models. This behavior has been investigated

to some extent by Hogg and Leschziner [6]. However, in that work swirl ratios were such that no

recirculation zone was formed when the Reynolds stress model was employed. In addition, no

direct calculations of the critical condition of the flow were made. However, the critical state

(based on an inviscid analysis, c.f. Hall [7])is not difficult to compute and thus the purpose of

this research is to further investigate the criticality conditions of swirling flows downstream of

turbulent vortex breakdown as predicted using several different turbulence models (K- e, RNG

(c.f. Yakhot et al. [8]) and differential Reynolds stress). Geometries both with and without an exit

restriction are employed. The relationship and consequences (if any) of the state of the flow (in

terms of criticality) to the outflow restriction and turbulence model employed will be determined.
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NUMERICAL PROCEDURE

The incompressible, axisymmetric Reynolds-averaged Navier-Stokes equations are solved for the

swirling flow within a combustor-type geometry. Although the governing equations are solved in

general curvilinear coordinates, for purposes of brevity they are presented below in cartesian ten-

sor form. The continuity and momentum equations are given as:

OU i

Ox i

Oui Oul 1 0,O _tV2 OT,..
-_t +U.--- + Ui i],% poxi

(1)

(2)

respectively, where u i is the mean velocity, p is the density, _t is the viscosity, p is the mean pres-
me ! !

sure and xij u iu j are the Reynolds stresses.

Turbulence Models

Although the turbulence models utilized in the present study are well documented in the litera-

ture, the equations are included for completeness. When the K - E or RNG models are employed,

the Boussinesq hypothesis provides an expression for the Reynolds stresses is terms of the gradi-

ents of the mean flow as:

2
- - 6..K+ 2vtSij (3)-xO _ o

where v t is the turbulent viscosity, K is the turbulent kinetic energy and Sij is the strain rate. The

turbulent viscosity is expressed in terms of K and the dissipation rate E as:

r:
Vt. Ca-- _- (4)

Transport equations for K and E, respectively, are written as:

DK O vt OK_
--{---- 2V t S2 E

D--T " Ox i _ o k Oxi} +

DE vtde E 2 E2

0_0..{_____ + 2vtC_lRSiy R
D---t " Ox i _ o t Oxi} - Ct2 g -

(5)

(6)

In the case of the standard K- E equation ,_ = 0. For the RNG model (see Yakhot et al. [8]):

. CaTI 3(1 -q/qo) E2
1 + 13rl3 K (7)

where r I - SK/E and S - (2SijS0) 1/2

It remains to specify the constants in the above equations. For the K- E model the stan-

dard values for boundary layer flows (C a - 0.09, C_1 - 1.44, Ct2 - 1.92, o k - 1.0 and
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o = 1.3) have been taken. For the RNG model, theoretical analysis yields that C_2 = 1.68,

Ctl = 1.42, o k- o - 0.72,_10- 4.38 and 13 = 0.012.
The Reynolds stress model involves the solution of transport equations for the individual

Reynolds stresses u'iu'j. The following equations, employing the closure assumptions of Gibson

and Launder [9], and Launder [10], are solved:

Du'iu'i A_ / +P i+ -
-_ " OXk_OkdX k , j/ _Pij _0

(8)

The production term is computed as:

.--,z_..,Ouj .-Tr-_..,Oul
PlY = - u i u k_ k + u j.u k_c)xk

(9)

The pressure/strain and dissipation terms are modeled as:

¢Pij " - CaF, (u'iu'j - 6ijK) - C4 (Pij - fliP)
(lO)

2 (11)
e ij " "_ S ijg

with values C 3 - 1.8 and C 4 = 0.06 assigned to the constants.
For each model wall functions based upon the assumption of a fully developed equilib-

rium turbulent boundary layer are utilized in the near wall region. This approach is deemed suit-

able since the physics of the problem are not dominated by near wall phenomena.

Solution Procedure

The above equations were solved using the commercial code FLUENT [11]. FLUENT uti-

lizes a pressure-based control volume technique. Second-order upwind interpolation is used to

provide values of variables on cell faces. Pressure-velocity coupling is implemented using the

SIMPLEC algorithm [12]. Convergence of the solution is assumed when the sum of the normal-

ized residuals for the conservation equations is decreased to a minimum of 1.0 x 10 -3. (The resid-

ual for a given equation consists of the summation of the unbalance in the equation for each cell in

the domain.) Comparisons revealed that solutions converged by an additional factor of two were

virtually indistinguishable. Since the above techniques are well known and widely discussed in

the literature, they will not be elaborated upon here.

Geometry and Boundary Conditions

The geometric configuration is that of a prototypical combustor. The geometry near the expan-

sion/breakdown region is shown with the computational grid superimposed in Figure 1. The

domain was discretized using 170 (axial) and 40 (radial) grid points. Grid points were clustered

near the breakdown region. The length of the domain is 40h, where h is the radius at inflow. The

expansion of area ratio 4:1 takes place over a length of 3h. Note that the i=constant lines in the
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physicalgrid occuratconstantx -- this is to facilitate calculation of the flow criticality. Addi-
tional calculations were made utilizing a 114 x 27 grid. No significant changes in the solutions

were noted.

At inflow, a solid body rotation of the form w ,- ff2r has been specified (where w repre-

sents the circumferential velocity). The value of Q was assigned values ranging form 0.75 to 1.5.

The axial velocity has been taken as uniform, that is u - 1.0, and the turbulence intensity was set

at 10%. At the outflow boundary, zero streamwise gradient conditions were enforced. The appro-

priateness of these conditions is confirmed by examining the distribution of the velocity contours

(as shown in the Results section) near the outflow boundary. In addition, for each calculation the

Reynolds number, based on the axial velocity and duct radius at inflow, was 100,000.

Criticality Calculations

Determination of the criticality of the flow is based the solution of the following ordinary differ-

ential equation (c.f. Benjamin [2] or Hall [7]):

a 2F c 1 aFt 1 a 2u 1 Ou 1 0_:27 _

Or 2 r Or + ----+ + J_ ¢ "UOr 2 -_-_ r_-u2-_ 0 (12)

where r. - rw is the circulation and F c is a quasi-cylindrical perturbation shape function.

Assumptions inherent in the above equation are that the fluid is inviscid, and that the flow is

steady and axisymmetric. Thus, the criticality condition, as defined by Benjamin or Hall, is con-

cerned only with the propagation or existence of axisymmetric waves on inviscid cores. However,

we shall utilize the theory to predict the ability of high Reynolds number turbulent cores to sup-

port axisymmetric waves.
The radial distributions for u and R are available at any axial location from the mean flow

_culations. The above equation is solved subject to the boundary conditions F c - 0 and
-- .- constant at r - 0. The flow is subcritical if the solution curve passes through zero in the

_erval 0 < r < 2h, supercritical if the solution does not pass through zero, and critical if the solu-

tion is zero at both r - 0 and r - 2h (where 2h is the duct radius). The above equation is

solved utilizing a second-order accurate modified Euler technique.

RESULTS

The behavior of each of the turbulence models in predicting the location of the return to criticality

of the vortex is presented first. Following this, contours of constant axial velocity are examined,

and the effects of outlet restrictions on the flow are discussed.

Mean flow calculations were performed for Q =0.75, 1.125 and 1.5, utilizing the K- e,

RNG and Reynolds stress turbulence models. The axial location at which the vortex returned to a

supercritical state was computed by solving an ordinary differential equation, as described earlier.

In each case, the vortex was supercritical upstream and subcritical immediately downstream of

the breakdown location. The results for return to supercriticality are summarized in Figure 2. The

K- e model predicted a return to supercritical conditions at locations considerably upstream of

that predicted by the other models. In addition, and contrary to what one would expect, theK - e

model predicted that the location at which the vortex returned to a supercritical state was not
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affectedby changesin theswirl levelat inflow. Conversely, the RNG model showed an expected

sensitivity to increases in swirl. That is, as the swirl level at inflow was increased, the critical

location moved downstream. In the case of the Reynolds stress model, the vortex remained sub-

critical to the exit for all swirl levels. We note that f2 - 0.75 represented the approximate mini-

mum swirl level for which a recirculation zone was formed using the Reynolds stress model.

Consequently, calculations of vortex breakdown flows using Reynolds stress models will likely

involve outflow boundary conditions imposed on subcritical flows (due to practical limitations on

the length of the computational domain). However, this need not be the case for the two-equation

models.

Escudier and Keller [4] have shown that the shape and internal structure of the recircula-

tion region is strongly influenced by outlet restrictions if the restriction is imposed within a sub-

critical flow. To examine whether or not these effects are observed in numerical calculations,

results have been computed using the Reynolds stress model for area reductions of 19% and 36%

with Q .. 1.5. The reductions extended over 33.67h s x _; 40h. Results are presented in terms of

axial velocity contours in Figures 3a-c for the unrestricted case, the 19% reduction, and the 36%

reduction, respectively. (For purposes of clarity, the contour plots have been scaled by a factor of

3 in the radial direction. In addition, the inner-most contour levels within the bubble structure rep-

resent the level u ,- -0.1.) It is clear that the 36% area reduction has a large effect on the shape

of the aft portion of the bubble near the vortex centedine. The zero axial velocity contour under-

cuts this portion of the bubble, in effect lifting the recirculation zone off the axis. Note however,

that the forward portion of the bubble remains virtually unaffected. In addition, a strong jet-like

vortex core exists downstream of the breakdown. These features are in very good agreement with

those observed by Escudier and Keller [4] in their experimental work. For the 19% area reduction

case, the primary effects concern the rate of recovery of the axial velocity downstream of the

breakdown. The shape and internal structure of the bubble remains similar to that of the unre-

stricted case. This result is also consistent with the results of Escudier and Keller. We do note that

the geometry of Escudier and Keller was somewhat different than that employed in this study. In

their study, a solid inner cylinder was included at the inflow plane, and a step expansion rather

than a gradual expansion was used. Numerical convergence problems prevented our use of that

geometry. However, the structure of the recirculation region for confined flows undergoing vortex

breakdown does not appear to be overly sensitive to the inlet geometry.

It is of interest that the downstream measurements by Escudier and Keller were 0.39L

upstream of the area reduction (where L was the distance between the inlet and the reduction).

Thus, it is quite possible that for their cases in which the area reductions were very large, the flow

actually returned to a supercritical state upstream of the restriction (but downstream of their last

data point). That is, due to continuity the mean axial flow velocity increases with the square of the

area reduction; however conservation of angular momentum dictates that the swirl velocity

increase in a linear manner. Thus, the ratio of swirl to axial velocity generally decreases, resulting

in a possible return to supercritical conditions. In fact, the authors found that for the low swirl

case (f2 - 0.75) area reductions on the order of 20% did result in the flow returning to a super-

critical state slightly upstream of the area reduction. However, for the high swirl cases shown in

Figures 3b-c, the vortex remained in a subcritical state to the exit.

Contours of constant axial velocity for the K - _ and RNG models (without exit restric-

tions) are shown in Figures 4a-b, respectively for the case _ - 1.5. The differences in the axial
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velocity distributions downstream of the breakdown region as predicted by these models and the

Reynolds stress model are quite large. The rapid increases in the axial velocity for the K - E and

RNG models (accompanied by equally rapid decreases in the swirl velocity) account for the rapid

return to supercriticality. In addition, the internal structures of the bubbles predicted by these two-

equation models differ considerably amongst themselves, and with that produced by the Reynolds

stress model. Calculations were also made for the K- e and RNG models 36% area reductions.

For the sake of brevity, we show only the results from the RNG model in Figure 4c. (Recall that

for the two-equation models the vortex was supercritical upstream of the restriction.) As the fig-

ure reveals, virtually no difference in the axial extent or shape of the recirculation region resulted

(when compared with the case in which no restriction was employed). This further confirms the

experimental results of Escudier and Keller, and highlights the extreme sensitivity of strongly

swirling flows to the turbulence model employed.

CONCLUSIONS

It is clear from the results of this study that wide differences exist in the predictions of two-equa-

tion and Reynolds stress turbulence models for return to supercriticality of swirling flows down-

stream of vortex breakdown. The results of the Reynolds stress model are in better agreement

with experimental results for swirling flows (in similar geometries) as described by Escudier and

Keller [4] than results predicted using two-equation models. Thus, the study further highlights the

inappropriateness of using two-equation models to predict strongly swirling flows. The sugges-

tion by Escudier and Keller that outflow restrictions might have a drastic effect on the structure of

the breakdown as predicted through numerical solutions to the equations of motion was con-

firmed. Results revealed that for relatively large area reductions (on the order of 36%), the struc-

ture of the recirculation region may be greatly affected. However, for lesser reductions, the shape

of the recirculation zone may be very similar to that resulting from the unrestricted geometry.

Consequently, it does not appear that the requirements for the specification of outflow boundary

conditions need be significantly more stringent for subcritical swirling flows than for supercritical

flows, or for flows without swirl. This is fortunate--the persistent nature of the subcritical flow as

revealed by the experiments of Escudier and Keller [4], and as predicted by the Reynolds stress

model would severely restrict the predictive capability of many engineering-type calculations.

The authors plan future work in the area of combusting flows. For these calculations,

accelerations in the axial velocity due to decreases in density should considerably alter the critical

state of the flow.
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1. Computational grid in the region of vortex breakdown.
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2. Location of return to supercritical conditions as predicted by K- E, RNG and Reynolds stress

turbulence models for strongly swirling flows.
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a

b

3. Contours of constant axial velocity; Reynolds stress model, f2 - 1.5; contour levels from - 0.1

to 1.0 in intervals of 0.1 (geometry scaled by a factor of 3 in the radial direction).

a) No outlet restriction

b) 19% area reduction

c) 36% area reduction
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• g,

b

4. Contours of constant axial velocity; Q - 1.5 (geometry scaled by a factor of 3 in the radial

direction).

a) K- t model; contour levels from -0.2 to 1.0 in intervals of 0.1.

b) RNG model; contour levels from -0.4 to 1.0 in intervals of 0.1.

c) RNG model; 36% area reduction; contour levels from -0.4 to 1.0 in intervals of 0.1.
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WITH SURFACE RADIATION

NUMERICAL SOLUTION OF FLUID FLOW AND HEAT TRANSFER PROBLEMS

_ ?
S. Ahuja and K. Bhatia

Engineering Mechanics Research Corporation
Troy, Michigan

SUMMARY

/
/

r_ , -i _- )

This paper presents a numerical scheme, based on the finite element method, to solve strongly coupled

fluid flow and heat transfer problems. The surface radiation effect for gray, diffuse and isothermal surfaces is

considered. A procedure for obtaining the view factors between the radiating surfaces is discussed. The

overall solution strategy is verified by comparing the available results with those obtained using this

approach. An analysis of a thermosyphon is undertaken and the effect of considering the surface radiation is

clearly explained.

INTRODUCTION

There are many engineering applications in which a coupled analysis of fluid flow and heat transfer

is desired. Among a large list of such examples, a few important ones are design of heat exchangers, cooling

of electronic components, climate control and underhood analyses in automobiles, performance of industrial

furnaces, heat transfer analysis in confined cavities, and, cooling and heating of buildings, etc. The fluid flow

analysis generally requires solution of conservation equations of mass and momentum. Several numerical

approaches are available (refs. 1 to 4) under a variety of boundary conditions. In heat transfer studies usually

energy conservation involving all three modes (namely, conduction, convection and radiation) is expected.

However. until recently, conduction and convection heat transfer modes were accurately accounted for while

approximations were made for including the radiation analysis (ref. 5). The high nonlinearity involved in the

basic theory precluded from obtaining analytical solutions and a use of ordinary numerical methods for

practical problems. The availability of cheaper computer resources has caught the attention of researchers

wanting to include accurate radiation analyses in their studies. This is reflected in a collection of papers

included in (ref. 6) published recently.

The aim of this paper is to present a numerical methodology for analyzing fluid flow and heat transfer

problems (including all three modes). A brief account of numerical solution of Navier-Stokes and continuity

equations using the finite element method is presented. The assumptions involving the heat transfer via

radiation include non-participating fluids and gray, diffuse surfaces based on enclosure theory (ref. 8).

Solution of strongly coupled (heat transfer and fluid flow) phenomenon with natural convection is

demonstrated through a couple of examples. To benchmark the developed code. a comparison with the

already reported results is made. This is followed by a discussion of results in an analysis involving a study of

thermosyphon (ref. 9). a passive system used for cooling of electronic components.
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GOVERNINGEQUATIONS

In this section, the basic equations associated with the fluid flow and heat transfer are discussed.

Generally, it suffices to consider the conservation of mass, momentum, and energy in the given domain of

interest. In the presence of surface radiation, additional equation representing the conservation of radiative

energy must also be considered. The effect of radiative fluxes on the relevant surfaces must be reflected in the

overall energy balance. In summary, the following equations must be solved to conserve mass, momentum,

energy, and radiative energy:

conservation of mass:

0Uk (I)
- 0

0Xk

conservation of momentum:

conservation of energy:

0C --+Uk_k k = _j(k .)+Q

For explanation of the symbols employed, refer to the section titled Nomenclature. It should be noted that

Equations (1) through (3) are used for incompressible fluid flow with Boussinesq approximations invoked to

model the natural convection phenomenon.

conservation of surface radiative energy:

..... Fij t3T_s
j= I gJ _J j= I j= I j

In deriving Equation (4), it is assumed that the surfaces are gray, diffuse and isothermal (ref. 8). The view

factors, Fij, between surfaces i and j, appearing in Equation (4) must be computed when attempting the

solution of this equation. In the next section, a discussion on view factor calculations is undertaken.

(2)

(3)

(4)
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COMPUTATION OF VIEW FACTORS

In order to compute qr's (in Equation (4)), view factors Fij, between all radiating surfaces must be

available. In this section, the physical meaning ofviewfactor and its calculation will be discussed. For a

better understanding, i,j in the above equation can be replaced with 1 and 2. Thus, view factor. FI-2, between

two arbitrary surfaces (see Figure 1), '1' and '2' is defined as a fraction of diffuse radiant energy leaving

surface ' 1' that arrives at surface '2'. Mathematically,

j-A j"A . (5)l Cos 01 Cos0* dA1 dA2
FI-2 - AI 1 2 7r r_2

where A I and A2 are the areas of surfaces 1 and 2, respectively, r12 is the distance between the two elemental

areas dAI and dA2, 01 is the angle between the position dependent normal vector n-+and the line connecting

dA1 and dA2. Angle 02 is defined in a similar way. It must be noted that Cos 01 and Cos 02 must be positive

in order for the surface dA1 and dA2 to "see' each other. If either of the cosines has a negative value, the

corresponding view factor, FdAi-dA2 should be set to zero. Such cases, in which tile inactive side of the

radiating face acts as an obstructer, will be termed as 'self-obstruction' cases. Also, view factor FI-2 should

be set to zero, ifa third surface obstructs the view between surfaces 1 and 2.

In order to calculate view factors internally, the user must specify the radiation surfaces in terms of the

finite element faces ofa discretized domain. The user must also specify which of the two sides is a radiatively

active side. These pieces of information can be supplied very easily via the already existing card in the NISA

file of NISA/3D-FLUID. Each radiating face is taken as one radiation surface. View factors between the

radiating surfaces are automatically generated by NISA/3D-FLUID taking into account self-obstruction and

obstructions due to a third surface.

As can be assessed from the preceding discussion, computing view factors can result in usage of

excessive computer time. To economize this computation, different techniques are used depending on

whether the geometry being analyzed is 2D, 3D or axisymmetric. For example, double area integration

method (ref. 8) is employed in comparison with contour integration method (ref. 8) when a 3D geometry, with

radiation surfaces, is being analyzed. No special directives are required when computing view factors for

axisymmetric geometries. NISA/3D-FLUID internally generates a complete 3D model (with the axis of

symmetry as the X-axis [NISA/3D-FLUID]) to calculate the required view factors. Furthermore. for 2D

problems, a completely different approach, called Hottel's crossed-string method (ref. 8) is employed for its

computational efficiency and accuracy. Reference 8 provides more details for evaluating view factors for

interested readers.

FE FORMULATION & SOLUTION PROCEDURE

The partial differential equations (Equations 1 through 3) and the radiative balance equation (Equation

4) are to be solved simultaneously to account for the fluid flow and heat transfer analyses in a given domain

with specified boundary conditions. The convective terms appearing in Equations (2) and (3). simultaneous
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solutionof Equations (3) and (4), and arbitrary, geometries encountered in most practical problems would

require numerical tools for obtaining solution to coupled Equations 1 through 4. The Galerkin method in

conjunction with the finite element method (ref. 8) form the basis of discretizing Equations 1 through 3. The

penalty approach (ref. 3) is employed to eliminate the pressure from Equation (2) making use of Equation (1).

For further details, refer to (refs. 3 and 10). The discretized form of Equations (2) and (3) can be written in

matrix form as follows

[KI {X} = {f} (6)

where Kij is the "stiffness" matrix, consisting of contributions from acceleration, diffusion and pressure

gradient terms of Equation (2) and acceleration and diffusion terms of Equation (3). Xj represent [U, V, W ]

for momentum equations and IT] in the case of energy equation. The vector fj is discussed more at length as

this contains coupling terms in Equations (2), (3), and (4). For example, the vector {f} for the momentum

equations is

- j'f2 NI pgi[3 (T-TI3) d_ + SFNI (-PSij + xij) njdF
(7)

Equation (7) indicates the influence of temperature distribution on the momentum equations while convective

terms (included in Kij for Equation (3)) represent a dependence of the temperature field on the velocity

distribution.

Furthermore l] for the energy equation consists of the following term:

fj = Sf2NI Qdf_ + SrNI q dF

(8)

where

q = qa + qc + qr

In the above equality, qa, qc, and qr refer to the applied heat flux, effect due to convection boundary

conditions, and that due to radiation on the boundary, respectively. The gray-body radiative effects can be

considered via qr which is evaluated using Equation (4) for a "known" temperature distribution. It is thus

evident that Equations (3) and (4) are coupled via qr and T. Far a complete enclosure. Equation (4) can be

represented in the matrix as

[R] {qr} = [S] {T}

(9)

(10)
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where

RU

N

: /
j=l 8i _J

(11)

and

Sij

N

j=!

(12)

Ideally Equations (6) for momentum and energy equations together with the radiative balance Equation (10)

must be solved simultaneously. For practical reasons (computer memory and time, and nonlinearity in

Equations (6) and (10)), a sequential approach is undertaken to solve these algebraic equations. Depending on

the nature of coupling (strong for flows with free convective effects and weak for flows with forced

convective effects), momentum, energy, and radiative balance equations are solved. For more details, refer to

(ref. 10). It has been observed that qr (and hence T) solution max' not converge or may do so slowly. An

under relaxation of qr leads to its stabilization. This is achieved as follows:

q_+ I = _ q_+ 1 + ( I -_) q_. (13)

where ct is a user-defined relaxation factor. During a calculation sequence convergence checks are performed

for velocity, temperature and surface flux, qr, distributions by evaluating the L2 norms. The sequential

calculations are performed until the L2 norms of all the nodal variables and surface radiation fluxes fall below

a user-defined tolerance.

Special Cases:

There are a few special cases which require a slight modification to the above methodology for

including the gray surface radiative effects in the heat transfer analysis. These are as follows:

a) Domain with plane(s) of symmetry

b) Exchange of radiative flux through "windows" in the domain

c) Exchange of radiative flux between the domain and surroundings

d) Radiative surfaces with no thickness.

The details of these modifications are presented in (ref. 10).
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ILLUSTRATIONS

Theaimof the present paper is to discuss an efficient solution strategy that must be undertaken to
t

solve coupled fluid flow and heat transfer problems in the presence of radiative energy exchange between

gray surfaces in a domain of interest with specified boundary conditions. In the previous sections, the

pertinent differential equations and their respective discretized forms (using the finite element method) are

discussed. In this section, a discussion of the results obtained with the outlined procedure for a couple of

problems is undertaken.

Example 1: Natural Convection with and without Surface Radiative Effects in a Cavity.

The validation of the developed procedure is established by solving a problem studied by Behnia et al.

(ref. 11). The fluid flow due to natural convective effects in a square cavity with radiating surfaces is

considered. Figure 2 shows this cavity of a characteristic dimension, L and the specified boundary conditions.

The top and bottom walls are adiabatic. The left wall is maintained at a uniform hot temperature, Th. The

right wall has convective and/or radiative boundary condition. The convective heat transfer coefficient is h.

The temperature of the surroundings and the ambient temperature are taken to be T_c. All the internal surfaces

of the cavity have an emissivity of 0.9 and the fluid in the cavity is air. The cavity size, L, can be chosen to

get a Rayleigh number of 3xl05. Table I shows a summary of conditions under which each case is analyzed

with an aim of obtaining steady state temperature and fluid flow distributions in the cavity. Due to the

presence of natural convective effects, strong coupling between the fluid flow and temperature fields is

expected. The cavity is discretized into a graded mesh of 44 x 36 linear quadrilateral elements. The steady

state algorithm of the code is invoked. Table 2 shows the relaxation parameters employed for each of the run

detailed in Table 1 and the corresponding numbers of iterations required to obtain converged solutions.

Figure 3 shows the isotherms obtained for the cases denoted as R300, EC300, and REC300. A

comparison of isotherms for these cases clearly indicates the effect of surface radiation on the adiabatic walls

(top and bottom), the isotherms are no longer normal to these walls. Figure 4 shows the streamlines for the

cases R300, EC300, and REC300 respectively. Table 3 shows a comparison of the maximum value of stream

functions obtained for these runs with those listed in Behnia et al (ref. 11). A good quantitative agreement

between the results is evident. Figure 5 shows the horizontal velocity along the vertical center line for these

cases. The velocity profiles shown in the figure compare well with those in Figure 7 ofref. 1 I.

Example 2: Analysis of a Planar Thermosyphon.

In this example, the fluid flow and temperature distributions are studied in a thermosyphon including

the surface radiative effects. A thermosyphon is a device used for cooling of electronic components, heat

removal systems for nuclear reactors, and having applications in solar systems (ref. 9). Since thermosyphons

involve no blowing or pumping of fluids, they are less expensive and more durable (termed as passive

systems) as these do not require external signals for operatio n. A schematic of planar thermosyphon and the

assigned boundary conditions is shown in Figure 6. An analysis of fluid flow and heat transfer in a

thermosyphon is presented in (ref. 9) without the surface radiation effects. These effects have been included
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in thestudyhere.All thewallsareblackandareconsideredto beradiating.By observingtheradiation
surfacesinFigure6, it isevidentthatall thesurfacescannot"see"eachother.In otherwords, theview
factorcomputation,in thepresenceof thirdsurfaceobstructions,is invoked.Thesecomputationsaremore
complexandhandledefficientlyinNISA/3D-FLUID(ref. 10).

First,theresultsarepresentedforthecaseinwhichonlytheconvectiveeffects(dueto natural
convection)areconsidered.Thesameanalysisisperformedin (ref.9),inwhichtheeffectsof varyingthe
Rayleighno.andaratioof thermalconductivitiesof solidto fluid areconsidered.Thereforefor thesakeof
comparison,resultsarepresentedforaRayleighno.of 104andaratioof thermalconductivitiesof 1(see(ref.
9) for moredetails).Figure7showsthestreamfunctiondistributionfor thiscaseandthecorresponding
isothermsareshowninFigure8. A goodagreementbetweentheseresultsandthosepresentedin (ref.9) is
observed.

Now,thesurfaceradiationeffectsduetothesurfacesshowninFigure6 isconsidered.Theresults
for thiscasearenotpresentedin(ref.9). Figures9 andI0 showdistributionsof streamfunctionsand
isotherms.A comparisonof isothermsshowninFigures8and10indicateaconsiderabledifferencein their
distributions.A furthercomparisonof thevelocitydistributions,FigureI1,at "inlet"and"outlet"of the
thermosyphonshowmarkeddifferences.Thedifferencein thesevelocitydistributionsamountsto a
differenceof 25%in flow rate.Thisanalysisclearlyindicatesthatif thesurfaceradiationheattransferisnot
accountedfor, inaccuratedistributionsof temperaturesandvelocitiesmayresult.

CONCLUSIONS

A numericalschemebasedonthe finite element method is presented for solving coupled fluid flow

and heat transfer problems in the presence of surface radiation. A sequential solution of momentum, energy

and, radiative energy equations is considered for efficient computer memory management and disk usage.

The computed results validated the numerical procedure adopted for an analysis of coupled fluid flow and

heat transfer phenomena. The results presented compared well with those reported in literature. It is shown

via the results discussed in this paper that the surface radiative effects must be considered for a complete heat

transfer analysis. More research is underway to extend this work to consider non-gray surfaces and eventually

participating fluids.
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NOMENCLATURE

C = Specific Heat q =

g = Gravity Force r =

k = Thermal Conductivity F --

p = Pressure t =

Heat Flux

Spatial Coordinate

View Factor

Time
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Q
R

S

T

U

F

X

N

qJ

J
a

c

Volumetric Source

Radiation Matrix, LHS

Radiation Matrix, RHS

Temperature

Velocity

Forcing Function

Generalized Vector Nodal Unknown

Shape Functions

Stream Function

ct, ?, tp = Relaxation Parameters

p = Density

13 = Coefficient of Volume Expansion

c -- Surface Emissivity

5 -- Kronecker Delta

o = Stefan-Boltzmamn Constant

f2 = Domain

F = Boundary of the Domain

x = Fluid Stress

Subscripts

= Reference Temperature r = Radiative

= Spatial Index, Surface No. i = Spatial Index, Surface No.

= Applied Externally s -- Surroundings

= Convective

Superscripts

= Nodal Index i = Iteration No.
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Table 1 Summary of Three Different Runs

Run Ra B.C. on the right wall Surface Radiation

REC300 300,000 Convective + radiative included

EC300 300,000 Convective not included

R300 300,000 Radiative included

Ra = Gr Pr = p' g 13(Th-T®) L 3 . C p_.E

laz k

Table 2 Relaxation Parameters and Number of Iterations

Run

REC300

EC300

R300

Relaxation Parameter

Velocity

ct

0.04

0.04

0.04

Temperature

1.0

1.0

1.0

Radiative heat

flux

O

0.1

0.1

0.1

No. of iterations

64

40

68

Table 3 Values of IW'lmax for Different Runs

Run

REC300

EC300

R300

IW'lra_t-I_t'l"x, a = k
pCp

Behnia et al. NISA/3D-FLUID

(ref. !1) (ref. 10)

13.04

I 0.93

I 1.93

12.94

II.01

I ! .79
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SINGLE-DROP REACTIVE EXTRACTION/EXTRACTIVE REACTION WITH FORCED

CONVECTIVE DIFFUSION AND INTERPHASE MASS TRANSFER

Leonid S. Kleinman and X.B. Reed, Jr.

University of Missouri-Rolla
Rolla, Missouri

SUMMARY

f_

-3y

F.S

An algorithmhas been developed for the forcedconvectivediffusion-reactionproblem for

convectioninsideand outsidea dropletby a recirculatingflowfieldhydrodynamically coupledat the

dropletinterfacewith an externalflowfieldthatat infinitybecomes a uniform streamingflow.The

concentrationfieldinsidethe dropletislikewisecoupled with thatoutsideby boundary conditions

at the interface.A chemicalreactioncan takeplaceeitherinsideor outsidethe dropletor reactions

can take place in both phases.

The algorithm has been implemented and results are shown here for the case of no reaction

and for the case of an external first order reaction, both for unsteady behaviour. For pure interphase

mass transfer, concentration isocontours, local and average Sherwood numbers, and average droplet

concentrations have been obtained as a function of the physical properties and external flow field.

For mass transfer enhanced by an external reaction, in addition to the above forms of results, we

present the enhancement factor, with the results now also depending upon the (dimensionless) rate
of reaction.

INTRODUCTION

There are many industrialand environmental processesin which two-phase fluid-liquid

systems are in use. Gases may be dispersedas bubbles in liquidphases,such as occursin bubble

columns and spargedvessels.Liquidsmay be dispersedin gases,such as occursin scrubbers.And

a liquidthatisimmiscibleorpartiallymisciblein anotherliquidmay be dispersedin a liquid-liquid

spray column extractoror reactor.The designof such systems may involveheat transfer,either

intentionallyor incidentally,but the widestrange ofapplicationsinvolvesmass transfer.Interphase

mass transfermay proceedintoor out ofthe dispersedphase.One (ormore) chemicalreaction(s)
may takeplacein eitherthe dispersedor the continuousphase in orderto enhance the rateofmass

transfer.In two-phase reactions,certainof the reactantsmay be transferredfrom one phase into

the other,where the reactiontakesplace,and the reactionproducts may then be transferredback

intothe firstphase.Reactionsmay alsooccur inboth phases.

Because ofthefinite,generallysmallvolume ofeachdrop or bubble,interphasemass transfer

unaccompanied by chemical reactionisinherentlyunsteady,regardlessof the directionof mass

transfer.Even ifthereisa reactionthat admits of a steadystatein the drop or bubble,unsteady

behavior may neverthelessbe ofpracticaleven primary importance.

The continuousphase isinevitablyin motion relativeto the dispersedphase,and forclean

systems (containingno surfaceactiveagents),the motion in the two phases willbe hydrodynami-

callycoupled.
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We undertake here forconcretenessa liquid-liquidsystem inwhich a chemicalreactionmay

take placein eitheror both phases. The dispersedphase is sufficientlydilutethat the droplets

which sediment (eitherfallingunder theirweight or risingbecause of buoyancy) may be assumed

isolatedin an infinitemedium, both with regardto fluidmechanics and to diffusionand reaction.

The dropletsare taken smallenough that interracialtensiondominates shape effectsand they are

spherical.Although the approach we takeand the methods we use do not requirethatthatviscosity

dominates flow effectsand that the velocityfieldshave low Reynolds numbers ,we considerthe

hydrodynamically coupled Hadamard -Rybczinsky profileforcirculationwithinthe dropletdriven

by an externalvelocityfieldthat becomes a uniform streaming flowfarfrom the droplet.Physi-

caland chemical propertiesare assumed constant,which would be the case fordiluteisothermal

systems,and we thus analyzeinterphasemass transferforthe forcedconvectivediffusion-reaction

single-dropsystem. We investigate,specificallythe rolesof the reactionrates,as measured by

appropriateDamk6b/er numbers, the solubilityof the solutein the phases, as expressedby the

lineardistributioncoefficient(Henry'slaw),the ratioof convectionto diffusion,as measured by the

Pecletnumber, and the ratioofthe viscositiesand thatofmoleculardiffusivitiesofthe two phases.

GOVERNING EQUATIONS

The dimensionlessforcedconvectivediffusion-reactionequationsgoverningthe solutecon-

centrationsin the drop (0 < r < I) and the continuous(i <_r < co) phases,i = 1,2,respectively,

can be representedin the form

Oc(i)O-"'_+ K!i)v(i)"vc(i)= K(di)V2c( )- K(i)c(i), (1)

where i = Icorrespondsto the internaldomain 0 < r < I,and i= 2 tothe externalone 1 < r < oo.

The dimensionalpartialparabolicdifferentialequationshave been rendered dimensionless

usingthe dropletradiusR as the characteristiclength scale.The concentrationsare measured in

unitsofinitialdrivingforce,

c(i)= S (i)6(i)-H6oo, i- 1,2, (2)
60- H6oo

in which

f

H(_)=_ I, i=l

|H, i 2,

(3)

with H the Henry's "law" distribution coefficient.

The characteristic time scale can be selected, for example, on the basis of the fastest physical

or chemical process, occurring in the system, siz.,

i=1,2), (4)'dill ' rx'n ,

in which

r(i) R _.(i) R 2
/(4)(_u)Uoo' dii_--_, r'(i) 1co ,- i= (s)
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The diffusivitiesand rateconstantsforthe firstorder chemical reactionsare denoted by D(0 and

k('),respectively,and the K's representdifferentcombinationsofstandarddimensionlessparameters

fordifferentchoicesofr,,as indicatedin Table 1.

Although our numerical implementation of the algorithm requiresonly that the velocity

fieldsin the two phases be separable,for concretenesswe have used the Hadamard - Rybczinsky

solutionforthe convectingvelocitiesin the dispersedand continuousphases. In thisinstance,the

characteristicvelocityin each phase,with Uoo the freestreaminguniform flowat infinity,istaken

as

U(')_-f(0(/_)Uoo, {- 1,2, (6)

in which

1

f(1)(#M)- 2(1+/_)' f(2)(/_)_i (7)

with the viscosityratio

= _(_)/_,(2). (8)

. (2)
The equations(9)are the ones used in the sequel,reflectingthe selectionolr_ as the unit

of time:

ac(0 pe(2) /v(_)ac(0 v(_) r------_._ac(i)
o_-r+ T" _ aT-- Tx/1 - _:--#X-)

D(i) {I _ (_) I °_ [ 2-ac(_)l }= D(2"_" _'a"rr r2 + _-_-_ (1- A )--_--J
(9)

-DazI"_-_" c(0+ _o- HaooJ ' i= 1,2,

with A = cos8, subjectto the boundary conditionsat the dropletinterface,

I c(I)= c(2)
r : i: (i0)

acO) c9c(2)
H.D --bT-= -bT-

and at the limitsofthe overalldomain,

7" = 0 : C(1) < 00 (11)

c(2)_ 07"----#00:

Periodicboundary conditionsin anglevariable

08 _=0,_=0' i= 1,2,

after introduction of the new independent variable A are satisfied automatically.

(12)

(13)
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The concentrationsare subjectto the initialconditions:

t=0: c(I)=I, c(_)=0 (14)

The actualdirectionof mass transfermay be out of or intothe drop, depending upon the

drivingforce(to- H_oo),even though the formulationof the problem suggeststransferfrom the

droplet.

The oppositedirectionof mass transferin the actualproblem would leadto the appearance

ofthe inhomogeneous partin the reactionterms in(9)(butonlywhen the correspondingK! 0 _ 0).

THE ALGORITHM

The problem islinear,and we use the Galerkinspectralmethod forthe spatialdiscretization.

The advantages of thismethod are wellknown [i,2].

We expressthe unknown functionsc(0(r,A,r) in a customary manner,

M

cC_)(_,_,_)= _ c_)(_,_)P_(_),i= 1,2, (is)
wt=0

in which the Pro(A)arethe Legendre polynomialsoforder m and the coefficientfunctionsc_)(_",r)

are termed "radialfunctions"for brevityin the sequel.

The discretizationin the radialdirectionisperformed in somewhat differentways forthe

internaland externaldomains.

Using Equation (9) for mass transferinsidethe droplet(d = I),itis a simple matter to

show that functionsc_)(_-,r) obey the followingrestrictions:

c_I)(_,_= 0)= 0, l# 0 (18)

ac_ll = o, l _ i (17)
r r----O

c(1)t_"r) -even functionofr 1
st _-, k : 0,1... (18)Jc_}+,(_', r)- odd function oft

On the basis of these restrictions, the radial functions inside the droplet were approximated

by a series in even Chebyshev polynomials:

N(1)

c_)(r,r)=6,_,o'ao(1")+r'_"'_-'_ ¢_!.(r)T2._2(r), m=O,l,...,M (19)
mt=l

in which the Tn(r)are Chebyshev polynomialsof the firstkind of orderp, and

_:j = 2, j = 0,1,. (20)

_, = 1, _2j+1 =3, j=l,2,... (21)
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Using(19)weautomaticallysatisfyboundarycondition(11),avoid the singularityat the

originof the drop,and the functiona0(r) representsthe valueof the concentrationat the origin.

Such an expansion on the interval0 < r < I isvalidas the even Chebyshev polynomials

form a complete setforthe type offunctionsconsidered[10].

The use of halfthe commonly used interval[-I,I]permits us to double the highestorder

ofthe polynomialsused,leavingthe number of terms in the seriesunaltered.

The nonuniformity of the distributionof nodes in the spectralmethod (theirnumber in

closeproximity to the surfaceishigherthan near the origin)matches the physicsofthe problem

as the concentrationgradientnear the interfaceismuch bigger.

For the semi-infiniteexternaldomain we implement the widelyused procedureoftruncating

it at an appropriatelylargeradiusroo,far enough from the interfaceto make the disturbance

introduced negligible.The boundary conditionat infinity(12) isnow imposed on thisartificial

boundary. It could be imposed as "hard", "soft"[12]or "behavioral"[1,13].We use the "hard"

one,

r = too : c(2) = 0 (22)

because it immediately results in original boundary condition (12) if too ---*oo.

It is necessary to realize that by doing this we are changing the physical sense of the problem.

The decrease of the concentration to zero infinitely far from its source is caused physically by the

spreading the species over an infinite spatial volume. After introduction of the boundary sphere

at r = too, we model this decrease by imposing what amounts to an infinitely fast heterogeneous

reaction on the artificial boundary too. The only justification for this is an a posteriori one, viz.,

by checking that the increase of too does not alter the solution in the vicinity of the droplet and in

particular the interphase mass transfer.

Our computations have confirmed this and show that when too is chosen sufficiently large

the choice of the particular type of boundary conditions mentioned above does not influence the

resultant concentration distribution in regions where its value differs significantly from zero.

The domain 1 _< r < too is mapped onto the interval -1 < z < 1 in such a way that the

point z = 1 matches r = 1 and the point z = -1 matches r = too. Among the wide variety of

possible mappings two are used more often than others, the exponential and rational ones ([1, 2]).

A comparison by Grosch and Orszag [11] has shown that the latter mapping has some advantages
over the former.

Specifically, we use

r-(1 +6)
z = , (23)

where 6 isthe parameter representingthe distancebetween the dropletsurfaceand point mapped

intoz = 0. Itisworth mentioning that we have alsoimplemented the exponentialmapping and

could findno advantagesforthe rationalmapping overit.

The radialfunctionsin the externaldomain are expanded as

N(_)

c_)(_',z)= _, ¢_!,(_')Z,(z), m=0,1,...,M, (24)
n=l

where the Z,(z), n = 1,2,..., N (2) are linear combinations of Chebyshev polynomials, each satis-

fying the boundary condition following from (12):
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We take

z,(z = -i) = o, _ = 1,2,...,N(21. (2S)

z2k(z) = T_k(.)- 1

Z2___(z)= r___(_)+ i

(26)

Thus, we reduce the system of partialdifferentialequationsfortwo initiallyunknown func-

tionsC(1)(T,A,r) and c(2)(T,A,r) to a largersystem ofordinary differentialequationsinT, for

a0(r),8(I) A¢2) zn = 0,1, M, (27)
T_n I ' _fflr/I,,lrk 2 , * . •

nl = 1,2,...,N0), n2 = 1,2,...,N (2).

The totalnumber oftheseunknown functionsis1 + (M ÷ I)(N (I)+ N(2)).

In order to obtain equationsforthesefunctionswe use the conventionalPetrov- Galerkin

method, i.e.,the basisfunctionsare takenas the testfunctions[2].We definetwo inner products:

J_ fo 1 dr(/,g)(1)_ d_ /.g (2s)
I 14T'Z'_-r2'

dz(/,g)(2) _ d_ /.g (29)
1 1 V_-- z 2

Forming by (28)the inner product of (9)fori= 1 with the testfunctions

PoCA)ro(_), P_(A) _. T2,,-=(_), m = 0, 1,..., M, _ = 1,2,..., N¢1)- 1, (30)

and by (29) the inner product of (9) for i = 2 with the test functions

P,_(A) Z,,(z), m = 0, I,...,M, n_ = 1,2,...,N ¢2) - i, (31)

we obtain two vector equations

A(,) d_b(')d,r=(-K_')B(i'_) +K(_) B("d) - K(_)B('S)) " _b(i) + K(i)b(/) , i= 1,2. (32)

Here A (_),B (_'c),B (_'d),B (_'r)are {1% (M + 1)(N(_)- 1), 1 + (Air% 1)N(_)}matrices,

b(_)- {i + (M + 1)N (_)}are the vectorsofinhomogeneous terms,and _b(_)(_-) - {i % (M + 1)N(_)}

are the unknown vectors,

_(i) _(i) _(i) _(I) )Z_b(1)(T) = (¢_0, "t'O,I,'"wO,N(,)v.'',WM,I,...,WM,N(, ) (33)

,_(2) ,_(2) _(2) _(2) )T._(2)(T) = ( _'0,1''" "W0,N(2)'''" WM,I'''" WM,N(,) (34)

The remaining 2 (M + I) equationsare derivedfrom the boundary conditions(10) which

are implemented by the Lanczos tsu-method [1,2, 14].

194



Upon substituting(19) and (24) into (10), multiplying by P,_(I), m - 0,1,...,M and

integrating A from -1 to 1, we obtain two sets of M+I linear algebraic equations:

Q0).00 )= Q(2).¢(2), (35)

H.D.S0)._(!) = S(2).0(2), (36)

where Q(_), S(_)are {(M + 1), (M + 1)(I+ N(i))}matrices,i = 1,2.

By expressing _0) and ,_(_)win,N(,) win,N(2),m = 0,1,...,M, using the system (35)-(36) and

substitutingin the system (32),we arrivefinallyat the system of 1 + (M + 1)(N(I)+ N (2)- 2)

linearODEs:

A___rd_ = (B(C)+ B (d)+ B('))-_ +b. (37)

The constant matrices B (c), B (d)and B(') correspond respectivelyto the convective,

diffusiveand reactiveterms in the originalequation (9),b isan {1 ÷ (M + 1)(N(I)+ N(2) - 2)}

constantvectorand 0 (r)isthe vectorofunknown functions

_(I) _(I) , _(2) _(2) _(I) _(I) ,_(_) _(_) _T (3S)W0,1,'''W0,N(I)_ 1 w0,1,'''W0,N(2)_ 1,'''WM,I,''" M,N(t)_I M,1,'''WM,N(2)_ lj

and not simply a concatenation of vectors 0 (1) and 0 (_)

The matrices A, B (d) and B(r) are block-diagonal. They all have M+I nonzero square

{N(1)+N(_)-2, N0)+N(_)-2)} matrices on their main diagonals and their first l+(N0)+N(2)-2)
elements in the first row and the first column are nonzero.

The matrices B (c) that result from transforming the convective terms also have block struc-

ture with the same block sizes. However, they are no longer block-diagonal and the amount of

nonzero block-diagonals depends on the velocity fields v(Q, { = 1, 2. The higher the degree of

that is involved in the velocity field expressions, the greater the coupling between the radial

functions of different orders will be. And the increase of the order of this coupling leads to the

corresponding increase of the number of nonzero block diagonals in B (c).

For the Hadamard - Rybczinsky field, for example, these matrices will be block-tridiagonal,

and for the velocity field in [15] valid for higher Reynolds numbers, block-pentadiagonal.

The discontinuous initial conditions (14) are not appropriate for computations. Instead

we used the analytical solution for the pure diffusion case (no convection, no chemical reaction)

derived in [16]. The concentration distributions for very small time values were expanded over our

basis functions T2,-2(r) and Z,, _z = 1,2,... to initialize the computations, and the coefficients

obtained were used as initial conditions for a0(1"), _!,_ , and _!-2, m = 0,1,...,M, nl =

1,2,...,NO)- i, n2 = 1,2,...,N(2)- I.

For time discretizationof the system (37) we use the first-orderbackward Euler method.

Defining0 n as vector0 at the n-thtime stepofmagnitude At- and

system (37)can be rewrittenas

B = B (_) + B (d) + B (r), (39)

(A - AzB).AO "+I = A_'B._b" + Arb, (40)

where
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A_-+* = _-+1 _ _-. (41)

Every time step system of linear equations (40) was solved by regular Gauss elimination

(preceded by LU decomposition) with the following iterative refinement [3]. The matrix on the

left side of (40) has the same structure as matrix B; as mentioned above, it is block-tridiagonal

for the Hadamard-P_ybczinsky velocity field. Our attempts to apply block-elimination methods (in

particular, block Thomas algorithm [4]) failed presumably because block LU factorization does not

involve pivoting which is essential when diagonal dominance does not occur (which is the case for

high Peclet numbers).

We considered the matrix on the left side of (40) as a banded one with bandwidth 1 +

3 (NO) + N(2) - 2).
As long as this matrix depends on the time step and its factorization is a time-consuming

process, only two values of the time step were used for each run. A smaller one was used for an

initial time period and an another one for the subsequent time range.

The numbers of terms in series (15), (19), and (24) depend on the steepness of the con-

centration gradients and were different for different values of Peclet and DamkShler numbers. The
maximum numbers used were M = 87, N (1) = 25, N(2) = 97.

As is well known [1, 2], an increase in the number of terms in a spectral series (especially

in the series in Chebyshev polynomials) leads to very high condition numbers for the resulting

system of linear equations. This was alleviated by using double precision in all computations and,

as mentioned above by application of the iterative refinement to the solution obtained with the

Gauss elimination procedure.

QUANTITIES OF INTEREST

The most practically interesting quantity in extraction problems is the amount of material ex-

tracted by particular instant in time. For the problem under consideration (i.e. when species are

extracted from the droplet) this can be conveniently characterized by the time-dependent average

dimensionless concentration of species remaining in the drop:

C-'(1)----3"/01/: r2c0)(T, A,r) dA dr (42)
1

This quantity changes in time as a result ofmass transfer out of the droplet. The local and

surface average rates of this transfer are characterized by corresponding mass transfer coeffcient,

the quantities which when multiplied by the driving force give respective mass flux rate. The

nondimensional mass transfer coefficient is usually referred to as the "Sherwood number" which is

analogous to the Nusselt number in heat transfer problems.

Different kinds of Sherwood number can be introduced, depending on the driving force upon
which it is based and the domain to which it is related.

For the problem of single-drop extraction, the instantaneous driving force for mass transfer

is the difference between the concentration of the transferring species in the droplet and that far

away from it, taking into account the step change of the concentration at the interface due to

solubility,

F(ar) = _1) _ H_:oo, (43)

where _-_1)is the dimensional average concentration of species in the droplet.

196



Often the Sherwood number is based on the maximum possible(or in our case,initial)

drivingforce:

F(dr)= c0 - H6oo. (44)

Here we consideronly the external Sherwood number, i.e.,the nondimensional rateof

transferof speciesfrom the externalsideof dropletsurfaceintothe extern_1flow.

The localand averageSherwood numbers definedon the basisofmaximal drivingforceare

respectively:

and

Oc(2)

Shloc,O= -2H.D Or ,=I
(45)

I- 0c(2),=I
Sho = -H'D -- dA.

I cgr

Corresponding valuesbased on instantaneousdrivingforceare:

(46)

Shloc,0
Shlo c =

c l)+  ooH/FoC.) , (4z)

Sho

Sh = c-'(I) -_- _.oo_lr/F0(dr) . (48)

Obviously, the chemical reaction in the external region increases the rate of the extraction,

and this increase is characterized by the enhancement factor, which is the ratio of the corresponding

mass transfer rates [5]:

E- Sh(Da(z_) _ 0) (49)
Sh(Da 2 >= o)

COMPUTATIONAL RESULTS AND DISCUSSION

The resultsof the computations presentedcoverthe followingrangesofparameters:

0.25_ D _ 4,

O _ Pe (2)<_500,

0 < Da_ ) < 1000,

H=Iz=l.

The characteristic time scale was chosen as

_'.= _.(2)
cliff, (50)

which isjustthe Fouriernumber based on the diffusioncoefficientofthe externalfluid.The times

appearingon the plotsareexpressedintheseunits.The valuesofPecletnumber Pe and DamkShler

number Da presentedon the plotscorrespond to Pe(2)and Da_ ),respectively.
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To illustratequalitivelythe processofpure mass transfer(no reaction)from the dropletwe

presentin Figures i-3 the curvesof constantspeciesconcentrationat differenttimes forvarious

levelsof externalconvection(Pe (2)= 10,200,500 respectively).

The wellknown and intuitivelyexpectedincreaseofmass transferwithincreasingconvection

is apparent.

The influence of internal circulation on the development of the mass transfer process is

illustrated in Figures 4--5 where we present the isoconcentration curves for the same external Peclet

number (Pe (2) -- 500) and different ratios of internal and external diffusivities (D - 0.25 and

D = 4.0).

For L) - 0.25the internalconvectionismuch strongerin the sense thatthe value of Pe(I)

islarger.As a consequence the isoconcentrationcurvesinsidethe dropletliecloseto the internal

streamlines,a resultalreadyobtained numericallyby Johns and Beckmann [7],forthe specialcase

of mass transferresistancesolelyinsidethe droplet.The coincidenceofinternalisocontourswith

internalstreamlinesalsoconstitutedthe basicassumption of Kronig and Brink'smodel of mass

transferin a circulatingdrop [6].From a simplecomparison of the isocontourlevelsin Figures 4

and 5 alone one infersthat the mass transferfrom a dropletforD-4 ismuch more intensivethan

forD-0.25. The reason that the internalPecletnumber Pe(I)isgreaterforD - 0.25 isnot that

the internalcirculationisgreater,foritisnot (# = I),but that the internaldiffusivityissmaller.

Nonetheless,itis customary for brevityto describean increasein Pecletnumber as an increase

in convection,ratherthan the more lengthy but more accurateincreaseof the ratioof convection

to diffusion.In thisusage,one may phrase the conclusiondrawn from Figures 1-5 as follows:

convectionoutsidethe dropletincreasesthe rateof extractionbut insideconvectionsupressesthe
rateof transfer.

The influenceof the externalreactionrate on the concentrationdistributionis shown on

Figures2, 6 and 7. As could have easilybeen anticipated,an increasein Da(_) resultsin faster

extractionand an almost immediate disappearenceofextractedspeciesoutsidethe droplet(almost

no specieshere forha(2) 100 in Figure7)._.,ii _-

Figures8 and 9 show the effectofreactionrateon the localSherwood number. The values

of Shlo¢,0go to zero with time for allvaluesof angle variable#, although the distributionof

Sherwood number based on the instantaneousdrivingforceapproaches a nonvanishingasymptote.

An increasein the reactionratethus resultsina generalincreaseofmass transferand ofvaluesof

the Sherwood numbers, but the temporal variationofvaluesoflocalSherwood numbers at different

locationsislesstransparent,warrantingfurtherinvestigation.

Figure10 reflectsthe behaviorofaverageSherwood number Sh in timefordifferentvaluesof

externalPecletnumber Pe (2)forthe no reactioncase.The oscillationsof S/_were computationally

obtained by differentinvestigatorsincludingmentioned above Johns and Beckmann's article[7]

and Oliverand Chung in [9],who were solvingconjugate unsteady heat trasferproblem which

is mathematically analogous to the mass tranferproblem under considerationwhen there isno

chemicalreactioninvolved.These oscillationsare caused by the internalcirculationwith the most

detailedphysicalexplanationgiven by Brignellin [8].Consequently the periodoftheseoscillations

issmallerand the amplitutegreaterthe higherthe Pecletnumber is.The strongerconvectionalso

leadsto a highermass transferrateas itcreatesthe thinnerdiffusionboundary layerson the both

sidesof the dropletsurface.

Figure 11 illustratesthe influenceofthe rate of externalchemicalreactionon the average

Sherwood number. The plotshere confirmthe made above conclusionsof the increaseof the rate

ofextractionwith the increasingexternalconvectionand rateofexternalchemicalreaction.

In more evidentway thisisreflectedin Figure 12, where the decreaseof average droplet
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concentrationwith time is presented.Fromthis picture we canalsodeducea very important

conclusion that an increase in the reaction rate over some value will not benefit the extraction

results (the diffences between the average droplet concentration for _na (2)Hvalues of 300 and 1000

are pretty small).

Figure 13 shows the effect of reaction rates on the values and time behavior of the enhance-

ment factor E. The oscillations here are the consequeces of the internal circulation, the same as

for corresponding average Sherwood number on Figure 10. The values of E corresponding to the

same reaction rate are higher for smaller Pe(2) (lower convection). The possible explanation for

that could be that the corresponding values of Da(z _) which are just the ratios of Da(/_ ) and Pe(2)

are smaller for higher Pe (2).

Finally, we wanted to underline that the purpose of this article was to present the developed

numerical algorithm and to show what kind of results can be obtained. Our further articles will

include additional results and more detailed analysis of those results as well as of the results

presented in this article.
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NOMENCLATURE

_0

c(O

D(O

D

Da(/)

D.(O

E

H

k(1)

M

N(i)

pe(i)

T

R

t

u.(o
U_
v(i)

,/-

r,(i)
conv

r(1)

-dimensional value of the concentration in the origin of the droplet at t = 0

-dimensionalvalue ofthe concentrationat the infinity

-dimensionalconcentrationin the i-thdomain, i= 1,2

-dimensionlessconcentrationin the {-thdomain, {= 1,2

-moleculardiffusivityofthe solutein the fluidin the i-thdomain, i= i,2

-moleculardiffusivitiesratio,DO)/D(2)

k (i) R
-firstDamk6hler number in the i-thdomain, -(i_,,-, , i = 1,2

I '_.#)uoo

-second Damk6hler number in the i-thdomain, _, i = i,2

-enhancement factor

-factorshowing the leadingviscosityratiodependence of the

velosityscalein the i-thdomain, i= 1,2

-distributioncoefficient

-chemicalreactionrateconstantin the/-th domain, i= 1,2

-highestorder ofthe Legendre polynomialsused in the expansion

in the angulardirection

-number of terms in the expansion ofradialfunctionsin the i-thdomain ,i= 1,2
2U_]_

-Pecletnumber in the i-thdomain, _, i = 1,2

-dimensionlessradialcoordinate

-dropletradius

-dimensionaltime

-characteristicvelocityscalein the i-thdomain, i= i,2

-velocityof the flowat the infinity

-velocityfieldin the/-th domain nondimensionalized

by the correspondingvelocityscaleU!i), i= 1,2

-polaranglein sphericalcoordinatesystem

---_ COS

-molecularviscositiesratio,/_(1)//_(2)

-molecularviscosityof the fluidin the i-thdomain, i= 1, 2
-dimensionlesstime

/_ i=1,2
-convectiontime scalein the i-thdomain, f(i)(/_)Uoo'

R_
-diffusiontime scalein the i-thdomain, D--'_'{= 1,2

-chemicalreactiontime scalein the {-thdomain, 1, i= 1,2
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Table 1: Coefficientsin eq.(1)depending on the choiceofro (i,j--i,2)

_(j) Pe(i) D(i)
'd_ -'T-"D--'_

K(_') Ki') K(_')

D(_)

1 k (i) k(O

k(J)
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O.P. Agrawal and X.A. Lin

Department of Mechanical Engineering and Energy Processes
Southern Illinois University

Carbondale, Illinois

ABSTRACT P" / _

This paper presents a probabilistic one-dimensional finite element model

for heat transfer processes in porous heat exchangers. The Galerkin approach is

used to develop the finite element matrices. Some of the submatrices are asymmet-

ric due to the presence of the flow term. The Neumann expansion is used to write

the temperature distribution as a series of random variables, and the expectation

operator is applied to obtain the mean and deviation statistics. To demonstrate the

feasibility of the formulation, a one-dimensional model of heat transfer phenomenon

in superfluid flow through a porous media is considered. Results of this formulation

agree well with the Monte-Carlo simulations and the analytical solutions. Although

the numerical experiments are confined to parametric random variables, a formula-

tion is presented to account for the random spatial variations.

INTRODUCTION

Porous heat exchangers are key components in many engineering systems

such as high performance regenerative heat exchangers, thermal energy storage sys-

tems, cryocoolers, and packed beds. Several techniques have been developed to

analyze these systems. These techniques include, among others, analytical tech-

niques, such as separation of variables [1,2], memann method [3] and similarity

transformation [4];-semi-analytical techniques such as orthogonal collocation [5]

and collocation-perturbation [6,7]; and numerical methods such as numerical inte-

gration [8], shooting and Runge-Kutta integration [9], and finite element methods

[10]. In these techniques the above systems are considered as deterministic. That

is, the problems are formulated in terms of mean-values of the properties neglecting

variations in the mean values. Experimental measurements, however, show that

the properties of the systems mav vary significantly in a random fashion, especially

near a low temperature. Given the stringent demand on the design of modern heat

exchangers, these deterministic models may not be adequate.

Random properties can be incorporated in the above techniques using the prob-

ability theories and the theories of differential equations [11-14]. In many applica-

tions, it is difficult to solve the resulting differential equations in closed form even
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when the randomness is not considered [15]. In the last 30 years, Finite Element

Methods (FEMs) have successfully been applied to solve a large class of determinis-

tic systems, and more recently, probabilistic systems. Current trends for analyzing

random systems in engineering are given by Iyengar and Dash [16], Ibrahim [17],

Shinozuka [18], and Benaroya and Rehak [19]. Chamis and coworkers [20, 21] have

developed a general purpose finite element computer code called PICAN for prob-

abilistic analysis of composite materials.

The numerical techniques available to solve problems consisting of random vari-

ables and functions may be broadly classified into two categories; statistical and

nonstatistical. Most statistical techniques rely on numerical simulations among

which Monte Carlo simulation has been widely used [92]. The nonstatistical tech-

niques include perturbation methods [23-9.6], spectral decomposition methods [15,

27], and basis random variable methods [28, 29].

In addition to the FEMs, several investigators have used the Boundary Element

Methods (BEMs). The random operator problems were analyzed by Ettouney et

al. [30-32], and more recently by Manolis and Shaw [33]. Burczyfiski [34] employed

the direct boundary element method to develop two distinct procedures for the

treatment of random potential problems. Cheng and Lafe [35] employed the indi-

rect boundary element method to obtain stochastic integral equations for boundary

potentials and fluxes in terms of fictitious boundary sources. Other applications of

the boundary element method include the first order perturbation method devel-

oped by Drewniak [36] for the analysis of heat conduction problems with random

heat transfer and random heat conduction coefficient, respectively, and a procedure

for the analysis of time dependent problems in the frequency domain developed by

Burczyfiski and John [37].

The probabilistic methods discussed here, however, are largely confined to struc-

tural systems, and very little effort has been made to develop methods for porous

heat exchangers. In this paper, a probabilistic one-dimensional finite element model

for heat transfer process in porous heat exchangers is presented. The formulation

is based on the Galerkin method, the spectral decomposition of random processes,

and the Neumann expansion.

MATHEMATICAL FORMULATION

This section is divided into three parts: deterministic finite element model, prob-

abilistic finite element models for parametric randomness and stochastic processes.

and Monte-Carlo models. These models are considered next.

Deterministic Finite Element Model.- In order to develop a deterministic

analytical model for the heat transfer process in fluid flow through porous media.

consider the schematic of a one dimensional heat exchanger as shown in Figure 1.

It is assumed that the system is stationary; that is. the system parameters are not

216



changing with time. Using energy balance,one can derive the following differential
equations

d2T dT

kl-d_z2 + hs(t - T) = c-_z (1)

d2t

k,-_x2 + hs(T - t) = O (2)

where k! and ks are the thermal conductivity coefficients of the fluid and the solid,

h is the convective heat transfer coefficient, s is the porosity coefficient, T and t

are the temperature distributions in the fluid and the solid, and the coefficient c

accounts for the energy transfer due to fluid flow. In addition to these equations, the

boundary conditions are also required. The formulation presented here is applicable

to various boundary conditions. However, for simplicity, it is assumed that the

terminal temperatures of the fluid and the solid at the two ends are prescribed.

These conditions are written as

T(x = O) = To, t(x = O) = to T(z = L) = TL, and t(z = L) = tL (3)

where L is the length of the heat exchanger which is discretized into several finite

elements. If N is the vector of the shape functions defined over the elements, then

the temperatures T and t may be approximated as

T = NTTn and t : NTtn (4)

where Tn and t,, represent the vector of the nodal temperatures of the fluid and

the solid, and the superscript T represents the transpose. Observe that both solid

and fluid regions have been discretized into an equal number of elements, and the

same shape functions have been used for both temperature distributions. This is

not necessary and a formulation that considers different numbern of elements and

different shape functions is possible. Using the Galerkin approach, equations (1)

and (2) may be written as

k f-_x2 + hs( t - T)- -d'_xJ dx = 0 (5)

J:["' ]N k,-_-ix 2 + hs(T - t) dz = 0 (6)

Performing integration by parts on some terms of equations (5) and (6), and rear-

ranging the terms, one obtains

(7)
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where E is the global coefficient matrix defined as

E _._

-kfA - hsB - cC hsB

hsB -ksA - hsB
(s)

and vector b appears due to partial integration of some terms in Eq. (3) and the

boundary conditions. Matrices A, B, and C in equation (8) are defined as

f0 LB = NNTdx (10)

C = N( )rdx (11)

Equation (7) provides the desired deterministic finite element model. Observe that

matrices A and B are symmetric positive definite finite element matrices, whereas

matrix C is an asymmetric matrix. This makes matrix E asymmetric. Therefore.

one should not use a symmetric simultaneous equation solver to solve equation (7).

Probabilistic Finite Element Model.- As stated earlier, two types of ran-

dom behavior may appear in the system; parametric and spatial. These two random

processes will be considered separately.

Parametric Randomness.- For simplicity, only ks is considered as a random

parameter. If other parameters also vary randomly, then the formulation can be

extended appropriately. The random parameter ks may be written as ks = ks0 + e,

where ks0 is the mean value of ks, and e represents the random variations with mean

zero and standard deviation a (i.e. < e >= 0. and < e2 >= a2). Substituting the

expression for ks into Eq. (7), one obtains

[El +  E2] (12)

where matrix Ez is the same as matrix E in equation (8) except that ks is replaced

by ks0 and matrix E2 is given as

_2 ---

0 0

0 -A
(13)

Observe that Tn and t_ are now vectors of random variables. Using the Neumann

expansion, the temperature vector can be written as

t_
= [I-e(E3'E2)+e2(ET'E2)2-e3(E_'E2) _ +...] E_'b (14)
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provided that Ile(E_lE2)ll < 1 is satisfied, which is reasonable for most practical

systems. From equation (14), the expected value of the temperature vector is

[/-- <e > (E_'IE2) 2- < > + "'] Ellb< >= > (E{'E2)+ < _2 e3 (E_,E2)3

(15)

where <> is the expectation operator. Observe that E{IE2 is constant. Further-

more, given the probability distribution, < e i > (i = 1,2,... ,) can be computed

numerically and in some cases analytically. Substituting these values in equation

(15), the expected values of the temperatures can be obtained. Similarly, the second

order characteristics of T, and t,_ can be obtained as follows:

t,_

Once again, the matrices containing e in equation (16) can be expanded in Neumann

series to obtain the covariance matrix for temperature distribution.

Equations (15) and (16) provide a probabilistic model for parametric randomness

in k,. A similar approach can be used for other random parameters.

Spatial Randomness.- Consider that k, varies randomly from point to

point along the length of the heat exchanger and that other properties are constant.

k_ can be written as k, = ks,,, + k,_, where k,_ represents the mean function and k,r

represents the stationaxy Gaussian process with zero mean functions and specified

correlation function R(z, u), which is symmetric and positive definite. Using the

Karhunen-Loeve (KL) expansion, k,_ can be represented as [38]

k,_ = _ e_¢,(x) (17)

where {¢_1/ = 1, 2,...} is a set of orthogonal eigenfunctions of certain dit:['erential

equations and e_ (i = 1, 2,...) are uncorrelated random variables. These eigenfunc-

tions satisfy the following integral equation

A_¢i(x)- foLR(x,u)¢i(u)du, (18)

where Ai is an eigenvalue associated with ¢_(z). Furthermore, the coefficients ei

(i = 1...., oo) satisfy the following identity

A;6_j =< ele# >, (19)

where < e_ >= A{ gives measure of randomness along the ¢i(x) coordinate. One of

the advantages of the series expansion is that it provides a second moment charac-

terization of k,, in terms of uncorrelated random variables.
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Using Eqs. (5), (6),and (17),and following the approach presented above, one

obtains

-kfA- hsB- cC hsB T,_ = r b ] (20)L ]
hsB - E eiDi - hsB

where matrix Di is defined as

Di /0 L dN T dN= ¢,(x)(_) ( "_x )dx (21)

Equation (20) is very similar to Eq. (12). Therefore. the statistical characteristics

of the temperature vector T_r t_r can be obtained using the Neumann expan-

sion and the procedure discussed for parametric randomness.

The above discussion provides a probabilistic model when k, represents a stochas-

tic process. A similar approach can be used for other stochastic processes.

Monte-Carlo Method.- Monte-Carlo simulations rely on equations (12)

and (20). In this technique, a random number generator is used to obtain a large

set of random numbers that represent the desired probability distribution curve of

the random variables. This process is repeated for each random variable. Depend-

ing on parametric or spatial randomness, equation (12) or (20) is used to obtain

an equal number of sets of nodal temperatures, which are then used to obtain the

statistics for the nodal temperatures. For an accurate answer, this scheme requires

a large number of numerical tests. This number can be reduced using the following

approach: (1) grouping the random data, (2) performing only one test for each

group, and (3) using the probability information to account for other data in the

group. This approach can significantly reduce the number of numerical runs for

accurate results.

NUMERICAL RESULTS AND DISCUSSIONS

To validate the formulation developed here, a dilution refrigerator heat ex-

changer consisting of superfiuid Helium II as fluid and the sintered copper as

the solid was considered. The system response was obtained using this scheme

and an analytical scheme. For numerical simulations, the following parameters

were considered: K! = 7XIO4W/(m.K), K, = 500W/(m.K), h = 1200W/(m2K),

c = ll.75W/(m.K), and s = 0.2792m which are typical of this system. The value

of L was taken as 10 m. For convenience, the non-dimensional temperatures of

the fluid T I and the solid ts were defined as follows: T] = (T- To)/(TL - To) and

t, = (t - To)/(TL -- To). The following boundary conditions were taken: Tf(0) = 0.0,

t,(0) = 0.8, and TI(L ) = t,(L) = 1.0. The values of ks and h were varied to

study the effects of these parameters on the temperature distribution. To study the

probabilistic effects, the system statistical response was obtained using Monte-Carlo

simulations, the analytical schemes, and the proposed scheme. Results of this study
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are shown below.

Figure 2 compares the temperature distributions obtained using the analytical

and the proposed schemes. The two results agree very well. The fluid temperature

changes almost Linearly due to the large conductivity of superfluid HeII. The solid

media temperature decreases faster near the inlet point than inside the exchanger

because of the strong convection near the inlet. Since the outlet point tempera-

ture is higher than the inlet temperature, the temperature of both fluid and solid

increases after some distance. Once the temperature of the fluid and the solid be-

come equal, convection stops and the temperature of both media increases at the

same rate.

Figure 3 shows the temperature profiles of the solid and the fluid for k, = 250,

500, 1000, 1500, and 2000 W/(m.K). It is clear that an increase in solid thermal

conductivity causes the temperature of the solid to increase. This is because con-

vection becomes less dominant at higher values of k,. Due to large fluid thermal

conductivity, the fluid temperature profile remains unchanged.

The temperature profiles for h = 600, 1200. 2400, and 12,000 W(m2.K) are

shown in figure 4. As expected, increase in convective heat transfer coefficient

causes the solid temperature to decrease rapidly and merge with the fluid temper-

ature sooner.

In this investigation, parameter h was considered as a random variable, and all

other parameters were kept the same. Using a random number generator, 20,000

random sample points having 10 % variations of mean convective heat transfer co-

efficient with 90 % confidence were generated. These data were used in the Monte-

Carlo method, the exact solution, and this scheme to predict the mean response

of the temperature profile. All three schemes gave the same results. To compare

the relative accuracy of the current scheme with the Mome-Carlo sch.eme, the per-

centage errors for the two schemes were computed. Results are shown in Figure 5.

It can be observed that both schemes overpredict fluid temperature while they un-

derpredict solid temperature, and the difference between the two schemes is small.

However, from the formulation, it is clear that this scheme requires fewer number

of computations than the Monte-Carlo scheme.

CONCLUSION

A deterministic and a probabilistic one-dimensional finite element model for heat

transfer processes in porous heat exchangers has been presented. A set of numeri-

cal experiments have been performed to validate the model. This formulation leads

to an asymmetric global coefficient matrix. Numerical experiments show that this

scheme agrees well with the analytical and the Monte-Carlo methods. However, for

mean and standard deviations, this scheme requires fewer number of computations

in comparison to the Monte-Carlo scheme.
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SUMMARY

A two dimensional finite volume method Is used to predict the film coefficients In the transitional

flow region (laminar to turbulent) for the radiator panel tubes. The code used to perform this analysis is

CAST (Computer Aided _Simulation of Turbulent Flows). The Information gathered from this code Is
then used to augment a Sinda85 model that predicts overall performance of the radiator. A final

comparison is drawn between the results generated with a Slnda85 model using the Sinda85 provided

transition region heat transfer correlations and the Sinda85 model using the CAST generated data.

INTRODUCTION

Plans for the radiator for Space Station Freedom were to have several panels connected by fluid

manifolds. The manifolds on either side of the radiator are connected by 12 thin tubes (1/8", 3.175

mm) per panel. (see Fig. I). Flow through the tubes is not a constant rate. It varies as a function of

the position of the station as It relates to the sun. The flow in the thtn radiator tubes can go from a low
flow rate (laminar) to a high flow rate (turbulent). Accurate prediction of the radiator's thermal

performance depends on several aspects, including the ability to predict the film coefficients of the fluid
in the panel tubes. A grey area in this prediction Is in the area of transition flow (2300 < Re < 10,000),

especially in thin tubes. Small changes in the film coefficient can effect predictions of the radiator

performance and freezing of the working fluid.

SYSTEM DESCRIPTION

A radiator panel tube has an inner diameter of 1/8", and the tube is 12' long (3.175 ram, 3.658 m).
This translates to an L/D of 1150. The Sinda85 model (see Ref. I) took the entire tube into account,

along with the thermal connections to the heat sink (the space environment). This allowed the model to
predict the tube's fluid exit temperature.

The CAST model (see Ref. II) only modeled the tube to an L/D of 70. This allowed the flow to

become fully developed and predict accurate film coefficients. A compiled table of these coefficients

was then input into a second Slnda85 model. This model Is an exact duplicate of the above mentioned
Sinda85 model except for the differing film coefficients.

THE CAST CODE

It is assumed that the reader is familiar with the basic structure of Slnda85. No discussion will be

held on the development of that model. The cast model does need some discussion. CAST is a two

dimensional, finite volume fluid analysis code. After generating a grid that used an LID of 70, the

model was run for three known scenarios. The first was a laminar (Re = 2300) case. The predicted

film coefficients were wtthln 5% of the classic Nu = 3.66 correlation (see Table I and Ref. III).

Next, the geometry was changed by Increasing the diameter by a factor of 10. The flow was

increased to obtain a Reynold's Number of 10,000. Here, the predicted value of the film coefficient was
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Table I: Laminar and Turbulent Control Cases

Re UA (Ref III) UA (CAST)

2300 11.9 [btulhr/°F] 11.4

10,000 (10D) 4.25 3.57

10,000 24.0 23.5

within 10% of the classic Dlttus/Boelter correlation (Nu ,= 0.023 * Re^.8 * Pr ^.3, see Ref. III).

Finally, the diameter of the tube was brought down to the actual value (0.125") and the model was

run again at a Reynold's Number of 10,000. This time the model prediction was within 3% of the

Dlttus/Boelter correlation. These three results give a good deal of confidence to the ability of CAST to

accuratly predict the transition flow film coefficients.

The CAST code Input was now modified to run In the transition region. One point of Interest was to

determine that If acceleration and deceleration of the flow would effect the onset of turbulence (see Ref.
IV). When the acceleration parameter K (defined beow) reached a value of 2.0e-06, lamlnarlzation

becomes significant and and the heat transfer capabilities of the fluid are altered. In the case of the

radiator flows, the change in the vetoclty rates was not great enough to have any impact. (K < 1.0e-09)

In other words, the flow accelerated and decelerated at slow enough rates so as not to effect the heat
transfer.

K,,,u (dU/dx) / U^2
where u -, kinematic viscosity

U = stream velocity

Another area of concern was the effect of the transient conditions would have upon the system.
Slnda85 uses an Implicit (backward) differencing scheme to handle Its transient fluid calculations. An

Ideal fluid analysis code will have a long term history of each fluid element, as this may have an effect

on the performance of the fluid. The CAST model was run In steady state form for a series of

Reynold's numbers (see table II). A set of transient runs spanning the same range as the steady state

runs was also completed. The end result being, once again, the flow rates changed slowly enough that
steady state runs were accurate enough to be used to predict the transient cases. This allowed the film

coefficients obtained for the transient CAST runs to be Implemented in the Sinda85 model with
confidence.

Table I1: Reynold's Number vs. CAST Film Coefficient Calculations

Re UA

3000 15.2
4000 20.8

5000 21.4

6000 21.5

7000 23.3

8000 23.4

9000 23.5

10000 23.6

[btu/hrpF]

RESULTS

Figure II shows the results of the CAST model over the range 3000 < Re < 10,000. Film

coefficients versus L/D and Re are presented. Film coefficients were sampled over the length of the
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tube for each flow rate. The film coefficients were calculated in the following manner:

aT = (_TI Ul) I Uave - Tw

q = (T1 - Tw) k / _y

htc =, q / AT

Where TI

UI

Uave

Tw

q
T1

k

htc

= Incremental Axial Temperature

= Incremental Axial Velocity

= Mean velocity

= Wall (boundary) temperature
= Heat flux

= Temperature of Increment next to the wall

= Thermal Conductivity
= Film Coefficient

Table III shows the fully developed film coefficients obtained from CAST versus the Sinda85 film

coefficients for the range of Reynold's numbers. Slnda85 uses two correlations over the area of

concern, Over the range 1960 < Re 6420, Slnda85 uses Hausen's correlation:

Nu = 0.116 (Re^.667 - 125) Pr^i3

And over the range Re > 6420, Sinda85 used the Dlttus/Boelter equation.

Table III was generated using the mean values for each flow rate of the film coefficients from an
LID of 50 out to an L/D of 70.

Table IV is a the final table that lists the radiator panel tube exit temperatures generated by the two
Sinda85 models.

Table II1:Slnda85 and CAST Film Coefficients

Re UA (Sinda85) UA (CAST)

3000 6.0 [btulhrf°F] 15.2
4000 9.5 20.8

5000 12.5 21.5

6000 15.5 21.5

7000 18.0 23.3
8000 20.0 23.4

9000 22.0 23.5

10000 24.0 23.6

Table IV: Sinda85 and CAST Radiator Tube Exit Temperatures

Re Temp (Slnda85) Temp (CAST)

3000 -35.8 [°F] -36.8
4000 -28.9 -29.5

5000 -29.2 -24.5

6000 -20.8 -20.9

7000 -18.2 -18.3

8000 -16.2 -16.3

9000 -14.6 -14.6

10000 - 13.3 - 13.2

CONCLUSIONS
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A review of Table III shows that higher film coefficients are obtained using the CAST code instead
of Hausen's correlation (which Is empirically derived at low Reynold's numbers). The reason for the
increased heat transfer can be explained by the effect of the thtn tubes. Turbulent mixing boundary
layers take up a largef percentage of the axial flow. This leads to more fluid mixing and enhances heat
transfer.

The higher film coefficients lead to lower fluid exit temperatures, le, the radiator becomes more
effective. However, the film coefficients are only one part of the thermal network of the radiator. The
overall effect Is small and well within any margin of uncertainty so as not to change any conclusions of
the radiator performance made by the original Slnda85 model.

A side note to the conclusions must be considered here. Had the radiator tubes been much

shorter, the entry region effects would have been much greater. Figure II shows the Increased UA's for
at the Inlet conditions and as the flow starts to develope. It Is clear that there is enhanced heat transfer
in this area. The overall length of the radiator panel tubes makes this insignificant but for shorter tubes,
this augmented heat transfer would have had to have been considered.

RECOMENDATIONS

The particular version of the CAST code used Is refered to as a High Reynold's Number (HRN)
version. It Is best suited for flows well above the laminar region and into turbulent. For the lower
Reynold's number cases (the ones close to Re - 2300) the Low Reynold's Number (LRN) version, also
known as the k-¢ model could be used. The LRN could be used to verify, or modify, the HRN values.
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SUMMARY

Using global interpolation functions (GIFs). boundary element solutions are

obt, ailled for two-dimensional laminar flows. Two schemes are proposed for

handling the convective terms. The first treats convection as a forcing func-

tion. and converts the flow equations to l)seudo-Poisson equations. In the

second scheme, some convective effect is incorl)orated into the fundamental

solution used in constructing t he pertinent integral equations. The lid-driven

cavity flow is selected as the benchmark t)roblem.

INTRODUCTION

The boundary element method (BEM) has traditionally been applied to prob-

lems governed by linear differential equations..-\t the core of the basic BEM

computational process is the flmdamental solution talso referred to as the

free-space (;reen's function) defined as the iml)utse response of the governing

equation to a unit action. This fundamental solution is either too difficult

or impossil)le to derive tbr practi('al llonlinear problems. Recently. with the
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introduction of the so-calledDual Reciprocity techniques (see e.9., Nardini

,.(,: Brebbia [1982]: Brebbia tt al.. [1991]: Partridge et al.. [1992]; Cheng et

al.. [1993]: Lafe [1993]: Lafe &" ('heng [19.94]). the method is being proposed

for certain classes of nonlinear proMems.

Using t he Dual Reciprocit.v approach, a given problem is typically decom-

posed into two paris - the linear and nonlinear portions. The solution to the

linear portion is represented by a boundary integral whose kernel consists

of the fundamental solution to the linear governing equation. The nonlin-

ear part is rel)resented by either 1) local bases functions (Brebbia et al.,

[1991]): or 2) global interl)olation functions (GIFS) (Lafe [199:1]). In either

case. the boundary integral expressions and interpolation functions contain

coefficients whose values are to 1)e determined by enforcing the boundary

conditions. When the "'direct BEM'" approach is followed the unknown coef-

ficients are in essence the unknown physical variables (velocity components,

pressure, temperature) of the problem. On the olher hand. using the "indi-

rect BE.M'" approach, the unknown are the weights/strengths of the boundary

sources/dipoles and the local/global interpolating functions. The computa-

tional intensity of the indirect approach is much less than for the direct.

In this paper, we develop a (;IF-based indirect BEM code for two- di-

mensional steady-state incoml)ressible Navier-Stokes equation. Test results

are shown for the lid-driven cavity problem.

GOVERNING EQUATIONS

The gov¢'rning equations are:

O_l OU

O,--7+Ou - o

o,, Ou l #,, ,, ( o",, o2,,)
"o.5+ = o,-:.+ + or2/

"b-7.,...+ "e)u - p 0u + 7 \0.,_ + 0u_/

(1)

where (u. _') are the velocity colnponenls in the .r and y directions respec-

tively, p is the pressure, p is the density, and p is the viscosity. Let

X = .,'/L
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3" = .ql L

t" = ,I-_

I" = _'1-_

p = ,,1
With these tile governing eqllations become:

Of_ 01
-- + - o (4)
OX OY

. i-)l Or" OP I ( O_t" @l'_
t _ + vo_. _ ox + _ _,o.\_ + o__/ (s)

_ + _ o_ - o_ + _ \o.\_ + o__1 (6)

where Ihe Revnold's Nuinber R, = p-FLII,.

BOUNDARY INTEGRAL EQUATIONS

In order to converl the above into I)oundarv integral equations two ap-

1)roaches have been followed. In the first apl)roach, lhe entire system of equa-

lions is converted into an elliptic syslem, with the convective term wholly

embedded in the right-hand-side forcing function. There is concern about

the suitability of the elliplic system to adequalely represent the convective

forces at moderale Io high Revnold's mmfi)er regimes. The second approach

rec! ifi_'s this Ihroue, h a more dire('l 1)erl urbal ion-based analysis which is more

suiled Io ca l)l uring collxecl ire effects as lhe Reynold's nunll)er increases.

Approach I

The above equal ions are converted inlo an elliplic svslem:

V_U = F, (7)

v:_= & (s)

V'_f' = f'_ (9)

where
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.al" .av ,)P_

r_= .,(a_a, _),a,)

(10)

t.(x. Y)

l(.x. Y)

p(.\'. _')

in which

Boundary Integral Equations

The associaled indirect I)oundary integral equations are:

= fr w,(X'.)")g(.\".I":.\.Y) (IF + _.:/I_._,.(X.Y) (11)
A.

= ./r ,.2(-\"._"),j(.\". _": .\. _) dr + _ .__,,._,.(.\.r) (12)
A-

= .£ w3(X', l")g(X', l": .\. _) dF + _ 3:)_.Olk(.\', Y) (13)
k

,,=,,,[/.,-.,")' )')q
:¢i_.Ma.(X. }) = F,(A. Y) (14)

k

V2_k(.\ ._') = Mk(.g. Y)

The funct ions M_. (X.)") are the interpolation funct ions used in represent-

ing the convective terms. If we choose

.1I_. = co.,(m_.X)co.,(,,_._') (15)

it is easih" shown (Lafe [1993]) that

cos ())__..\ )co., (, _.V )
_Pk = (16)

(,ft. + ,,,_)

Approach II

Our aim here is 1o have a better incorl)oration of the convective effects in

the driving differential ol)erator. Let

( = lo+l_

l = lo+ li

P = Po+P,
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where([o. 1o. Po) denote solutions Io a convection-fi'ee flow tield, while ([71, 1,], Pa)

represent t he convective effects, ttence

., [OtoO o OtoO o]

17)

:8)

:9)

while

1V'2l', - o,(to. Io./',. li. P,)
IL

!V-'l ] - o2(_o, l;. l,. l i. Pi)
IL

!V_P, - oa( lo. Io. l,. I ].Pl)
"2

= .ll(t,,.l;.Po) + I,,(U,.14) (20)

= .[,(to. lo. Po) + h2([_.',._]) (21)

= h:_(I',. I ] ) (22)

where

. " " OPI
= lOl:' Ol;jg Ol_ Olol;+_

o, o_ + _ , + _o777+ 0_---:- OX

c.oOli 0Io .Oil aloe, ot:,,
o_ : 0_+7.vu,+_0_+_ ,+ig=

Ol_'oOl] 0I'o?)l'1 0/'o 0I] OIO O('l
03 - +'

O.k OY i)} OX ?)Y O.\ OX O}

.O_o , Ol.o 0t3,,
.fl = ( o0._ + I, 0]----:"+ OA--=

.013 I'0I° OPo
.h = t oh--_ + o957+ o_--=.

h l = l'l 0171 Of'l
• _ + _,:0_----=
.Oil 01]

h2 = _'0_ +I]Ol
Or, Ol] O/.10l ]

]13 --
OX OY OY OX

The exlernal boundary condi! ions are imposed on ( I o. I o. Po). Therefore the

va,'iables (I:. l]./71 ) are allowed to enjoy holnogen,'ous boundary conditions.
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Boundary Integral Equations

Tile velocity components (l_, I u). which are governedI)3"Laplace's equa-
tions, can i)e representedby "pure" boundary integral equation using the
fundanlenta]solution for potential flow. Howeverthe pressureterm, because
of the non-zeroforcing function, will include global interpolation functions.

Therefore. the indirect I)oundarv integral equationsfor the convection-
fi'eevariablesare:

I:o(-\. 1) f_ u,o,(-V'. )")g( V' Y'= . . :X.)) elf (23)

10(.V,}) ._ w02(.V'. " " Y':= } )g(.\ . .\.)) dF (24)

i •P0(.V. l) = U'os(.V'. I")g(.V'. Y': .V. )) dr + _ .30k_.(-\. Y) (25)

where (w01. u'02. u'03) are fictitious sources while 4# are the GIFS.

The convective effects (['1. I1. t91) are represented by GIFS. For flows in

simple geometries it is possible to select GIFS which aulomatically satisfy

the required homogeneous boundary conditions.
Hence

U_(X. )') = y]. .:l_.k_.(.V. )) (26)
k

li(X. 1") = Y'_ 32t, q',.(-V. 1) (27)
k

P,(.V. 1) = _ ,,h_.tPt.(.\'. Y) (28)
k

in which (.31_., 32t., 3.u.) are the pertinenl coefficients for the GIFS. These

parameters are calculated by enforcing

1. Equations ('20-'2"2) at. selected ('ollocation points within the flow region
and

2. Homogeneous conditions at selected boundary l)oints.

Tile chief advantage of tile first apl)roach is tile simplicity and size of

the global coefficient matrices, derived from the Laplace equation solver.

This Iranslates into a compacl, fast. and highly efficient numerical imple-

mentation. The drawback is ils iteralive characler since the forcing function
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del)ends on tile solulion being sought. ('onvergence is difficult to achieve for

large Reynold's munber l)ecause the governing ellip_ ic system becomes singu-

lar. and canno! adequately represenl t he underlying physics of the problem.

The second approach, which in essence separates the convection-free flow

from the lnain flow. allows for a more direct representation of the asymptotic

limits of the Revnold's number. Furthermore. by products of higher-order

terms (i.e.. setting hi -- h2 = h3 = 0. the solutions can be obtained without

iteration. Itowever. the coefficien! matrix is larger and the approach involves

a greater level of COml)utational intensity.

NUMERICAL IMPLEMENTATION

Approach I

We subdivide the boundary into ,_ elements. Let .\'k(x) (/," = 1,2,'''rib)

represent the bases functions describing the distribution of w on F. In the

examples being reported in this paper, constant bases functions are being

used for the fictitious strengths w; on the boundary. By selecting each of the

n_ boundary poinls as successive origins of in!egration, the pertinent integral

equations ('an be asselnbled into the system:

__,air,'_. = bi i = l.2.....m, (29)
k=l

where

{ Jr, .v,.(x,)g(x,.x,) dx' xi E r¢ (30)oil. = fr_ .\_.(x')Og/On(x'.x,) dx' xi E FQ

( _txi )_ V',d ,4iO);i Xi E F¢_'=' (31)I,, = o¢/0,,(x,i- E'/", ,_/_,j/o,, ,,, e rQ

Therefore. we have ,,, equations to determine wkwhere ¢ = (l. l.I').

(k = 1.2.... ,_,). Symbolically equation (2.9)can I)e written in the alternative
form:

AW =/3 (32)

which can be inverted to give:

W = ./-1-'/3 (33)

ORIG|NAL P._k_3_'i_
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The whole processboils down to the iterative solution of equations (14)

and (33), with repeated updating off using (10). Tile iterative steps are:

1. Start with a Irial F (i.,.. F, values for i = l.'2.---nd).

"2. Obtain 3 from equation (1-t).

3. Obtain 14/' using equation (33).

4. Use discretized forms of the al)propriate imegral equations to compute

(l). X'7_ at all 1_4 I)Oillts. This provides a I)et|er estimate fox" F.

5. Go back to Step "2 if convergence condition is still unsatisfied.

Note 1hat the malrix inversions in equations If 1) and (33) need only be per-

formed once. for fixed boundary problems. The vectors 14; and ,'3 are the

quamities whose valtws change during _he iteralive process. Once conver-

gence is reached, the discrelized inlegral equal ions can be used routinely to

obtain q_ = (/_. I-P)or the gradient at any poinl (x)of inl.erest.

Approach II

The numerical implement at ion for 1he convect ion-free quant it ies (/_o, 1,'0, P0)

is similar to the one followed in Approach I. with the coefficiem s for the GIFS

set to zero for the velocities. No iteralion is required.

The convective-flow quantities are calculaled t hrough the coefficients (3v,., 82k. 5'sk)

whose values are obtained by solving the following coefficient inatrices:

u T o T ;; T

Z + Z +Z = c,,
k=l k=l k=l

tl T tl T n T

k=l k=i k=l

nT nT r_T

k=l k=l /,'=1

i = l.'2.'"n d (34)

= 1,2,'--rid (35)

= 1.'2....ha (36)

t_ T

h_-/:'l.,_- = 0 .i = 1.'2...-,,,,
k=l

(37)
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nT

__, ,h_.E2.i_- = 0 j = 1.'2.. . .1_,,
k=l

r_ T

_., :ll_.E:)ik = 0 j = 1.'2." " ,_,,
k=l

(38)

(39)

where if tile" higher order terlns are neglected)

.tlik

.42ik

Uli#

J_2ik

J_3 i L.

('lik

( "2ik

F,,

F_i

El3 I:

Et,j_.

I V2qj_.(x,) /o(xi Oqq. OqJ_., OUook(xi)
- 6', - )_(x,)- _i,(x,)_tx,)- O.-V

Ot o

- 0) (x,)_t.(xi)

O_(x '- _ )
Olo

- _\- (x,)q,_.(x_)

= lv-'%Cxi) /o(x/ OqJ_. O_.,x , OVoR, - )_(x,) - _i,(x,)-_ -,, - -b-VCk(x,)
Oqq.

- _(x,)
01o Oqq., t)l_,, 0_.

- _-V(x_)_.x._x,)+_x,,7)5=(x,)
i)l ". t)t_ _. ill ". 0_ _.

= -_{x;)_(x,)+ _(x,._(x,)

= lv2q,_.(xi)
-)

¢ Ol ",,
= ,,(x;)_(xi)

0Io
= /o(x,)_(x_)
= 0

Ol ". 'x ' O Po
+ li,(x;i t-_Tt ,j + _(x;I

. 0Io, OP,,ixi)
+ io/x,i/-_x,)+ _-_

• _.(x.,) if x., E F,,

OqJ_.

Oo (x.i) if x i G FQ,

In the above ¢P - (I" |'. P): Q =_ (Ol/O,,.Ol/O,,.i)P/O,_): ,,r = 3(rib + n_),

and x, = (.V. }) for 2D flows.
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TEST RESULTS

We examined tile lid-driven cavity flow prol)lem depicted in Fig. 1. A unit

horizonlal velocity is imposed on the lid (al_ = l ). while the no-slip bound-

arv condilion I = I = 0 is imposed o11 all solid walls. The boundary

condition for the pressure oll all walls is (Fletcher [1991]):

OP 1 0 (0[ 0I'_
07_ - R, O., \_; OX }

A typical convergence profile, using A1)proach I. is shown (R, = 15) in Fig.

"2. The horizontal velocity at the vertical center-line is shown in Fig. 3.
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CONCLUSIONS

A boun(larv dement code. based on tile use of global interpolation func-

tions, for solving the Navier ,Stokes equations have been proposed in this

l)al)er. The avoidance of any domain integralion shows tile enormous power

of the techniqu(-'..\s long as the underlying physics of the problem is ade-

quately rel)resented in the fundamental solutions used as tile kernel of the in-

tegral equations, accurate simulal ions call I)e carried out for moderate to high

Reynold's numl)er flows. Only Irigononlelric bases have been used to repre-

sent tile nonlinear convective lerlns. Investigations are currently underway

for eml)loying olher bases including lhose derived fronl o,'thogonal functions

' ]such ( he)vchev polynomials, wavelets, and cellular automata transforms.

Three-dimellsional GIF-base(I BE.M ('ode for inlernal flows are also being

develol)ed.
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TURBULENCE BOUNDARY CONDITIONS FOR SHEAR FLOW ANALYSIS,

USING THE DTNS FLOW SOLVER -- "_ "/-Z/_'_/7 _?//

M. Mizukami _/NASA Lewis Research Center

Cleveland, Ohio

/9, / bSUMMARY
/

The effects of different turbulence boundary conditions were examined for two classical

flows: a turbulent plane free shear layer and a fiat plate turbulent boundary layer with zero pressure

gradient. The flow solver used was DTNS, an incompressible Reynolds averaged Navier-Stokes

solver with k-e turbulence modeling, developed at the U.S. Navy David Taylor Research Center.

Six different combinations of turbulence boundary conditions at the inflow boundary were

investigated: In case 1, 'exact' k and e profiles were used; in case 2, the 'exact' k profile was

used, and e was extrapolated upstream; in case 3, both k and e were extrapolated; in case 4, the

turbulence intensity (/) was 1%, and the turbulent viscosity (Pt) was equal to the laminar viscosity;

in case 5, the 'exact' k profile was used and t./t was equal to the laminar viscosity; in case 6, the 1

was 1%, and e was extrapolated. Comparisons were made with experimental data, direct

numerical simulation results, or theoretical predictions, as applicable. Results obtained with DTNS

showed that turbulence boundary conditions can have significant impacts on the solutions,

especially for the free shear layer.

INTRODUCTION

Turbulent shear flows play a major role in many aerospace and fluid dynamics

applications. Wall bounded turbulent shear flows, i.e. turbulent boundary layers (TBL), are

present in nearly all moderate to high speed external and internal flows. Turbulent free shear

layers (FSL) are important for many applications such as flow mixers and thrust producing
nozzles.

In computational fluid dynamic (CFD) analyses, the use of an appropriate boundary

condition (BC) is a critical element in assuring convergence to an accurate solution. Use of

inappropriate boundary conditions may cause any one or more of the following: inaccurate

solutions, poor convergence, nonphysical effects, or divergence.

For turbulent flows, the k-e turbulence model introduces two new flow properties,

turbulent kinetic energy (k) and turbulent dissipation (e), each with its corresponding transport

equation which must be solved numerically by the flow solver. As for any other flow property, it

would seem to be essential to assign the proper boundary conditions for k and e, especially on the

inflow boundary, where the flow enters the computational domain. However, the use of

appropriate turbulence BC's is frequently underemphasized or neglected.

Ideally, the exact profiles of k and e would be known, and they would be applied as the

inflow BC, but thatis usually not feasible. Experimental k profiles are sometimes available, but
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often with inadequate resolution for use as a CFD BC, especially near the wall. Measurement of k

requires an unsteady measurement of flow velocity, with a response time fast enough to capture

the smallest turbulence time scales, preferably in 3 components to take into account turbulence

anisotropy, e is almost impossible to measure experimentally, as it is calculated from the second

derivatives of mean flow properties, requiring exceedingly accurate measurements on a very free

survey grid.

Many flow solvers simply extrapolate k and e on non-wall boundaries of the solution

domain. But upstream extrapolation of turbulence properties at the inflow boundary is counter

intuitive, and it has been shown to produce inaccurate results (Georgiadis and Yoder 1994). In

particular, extrapolation of k and e at the inflow appeared to inhibit the production of k near the

inflow plane, resulting in locally lower turbulent viscosity. Furthermore, the eigenvalues of both

k and e transport equations are equal to the mean flow velocity, indicating that at the inflow

boundary, k and tz values should be specified (Hirsch 1990).

Alternately, some turbulence properties could be assigned uniform values over the entire

inflow boundary. Uniform turbulence intensity (/) and turbulent viscosity (/at) could be specified;

k and c values, which will vary across the boundary depending on the mean flow properties, can

be derived from I and/a t. Another possibility is to specify uniform I and turbulent length scale

(L), and from these derive k and t_. However, the specified values of 1 and Pt are typically

arbitrary estimates. Georgiadis, Chitsomboon and Zhu (1994) examined a 2-D ejector nozzle,

which includes both wall bounded and free shear flows. Specifying uniform I and Pt at the inflow

was found to match the data better than specifying I and L, or extrapolating k and e.

In the present work, the effects of different CFD turbulence BC's are examined for two

classical flows: a turbulent plane free shear layer and a flat plate turbulent boundary layer with zero

pressure gradient. The flow solver used is DTNS, an incompressible Reynolds averaged Navier-

Stokes solver with k-e turbulence modeling. Different combinations of the following boundary

conditions are used: 'exact' k profiles, 'exact' e profiles, extrapolated k, extrapolated e, uniform L

and uniform/z r Comparisons are made with experimental data, direct numerical simulation
results, and theoretical predictions, as applicable.

METHODS

Flow Solver

DTNS is an incompressible Reynolds averaged Navier-Stokes flow solver with k-e

turbulence modeling, developed at the U.S. Navy David Taylor Research Center, primarily by

Gorski (1988a, 1988b). The three versions of the code are designed to solve two dimensional

(DTNS2D), axisymmetric (DTAXI) and three dimensional (DTNS3D) flows, respectively.

Although the flows examined herein are two-dimensional, the three dimensional flow solver

(DTNS3D) was used here, on a three dimensional grid with 5 identical grid planes in the cross

stream direction, so that in the future, methods developed here could be be directly applied to

three-dimensional problems of interest.

DTNS was selected for this study for two reasons. First, it is a relatively well established,

general-purpose code, with a number of documented test cases with experimental comparisons,

such as: cascades (Gorski 1988b), flow over a cylinder (Gorski 1988a), an NACA 0012 airfoil

(Gorski 1988a), flow over a backward facing step (Gorski 1988a, Steffen 1992 & 1993) and
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laminar boundary layers (Steffen 1992). This allows the present study to focus on the fluid

dynamics, instead of the code development and validation. Second, it is an 'open' code, with the

source code available. This allows the specialized turbulence BC's to be implemented by

modifying the code. In addition, study of the source code leads to a deeper understanding of the

computational procedure and the relevance of the resulting solution, which are essential to a

fundamental study such as this.

The method of pseudo compressibility is used in the governing equations, so that state of

the art schemes developed for compressible flows may be applied to incompressible flows. The

total variation diminishing (TVD) scheme of Chakravarthy and Osher is used to discretize the

convective terms of the governing equations. The discretized equations are solved implicitly using

an approximate factorization method. Gorski (1988a) provides further details on the solution

procedure.

The Launder and Spalding (1974) turbulence model is implemented, which is generally

considered the standard high Reynolds (Re) number k-e. turbulence model. A wall function model

is used, which does not require boundary layers to be resolved using large numbers of packed grid

points, thus allowing complex wall bounded flows to be solved with a reasonable number of grid

points, and in a reasonable amount of time. Although the profile of an attached turbulent boundary

layer is assumed at the wall, the solutions have been found to be accurate even for some drastically

separated flows (Steffen 1993). Even low Re k-e models which resolve the boundary layer in

detail on a fine grid, make certain empirical assumptions about the wall bounded flow

characteristics. Furthermore, low Re k-e models models are often highly grid sensitive, and can

require extremely finely resolved grids packed very close to the wall to produce an accurate

solution (Avva et al. 1990).

The boundary condition routines were modified to allow for different inflow conditions as

follows. Mean flow velocities (u) are read in from a data file. k and e may be independently

specified at the boundary in two different ways: the profile may be read in from a data file, or it

may be zeroeth-order extrapolated. /.tt is calculated from k and e.
For both the wall bounded and free shear flow cases, six different combinations of k and e

BC's at the inflow boundary were investigated, as shown in table 1. In case 1, 'exact' k and e

profiles are used. In case 2, the 'exact' k profile is used, and e is extrapolated upstream. In case

3, both k and e are extrapolated; this is the default case for DTNS. In case 4, the I is uniformly

1%, and/.t t is equal to the laminar viscosity; k and e values are derived from these using the

following expressions, k and I are related by:

3 12
k = T Ilull2

(I)

In this turbulence model e and/_t are related by:

_t = Cu P k2/e (2)

where Cu--O.09, and the damping terms are neglected. In case 5, the 'exact' k profile is used,/1 t
is equal to the laminar viscosity, and e is calculated from (2). In case 6, the I is 1%, k is derived

from I as in (1), and e is extrapolated.

The amount of detailed turbulence information required at the inflow boundary varies from

case to case. Case I requires both k and e profiles; this is the most ideal case, but as discussed

before, e profiles are almost never available. Cases 2 and 5 require only k profdes; this is typically

more feasible than case I, because turbulence levels, and thus k, are often measured
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experimentally.Cases3, 4 and6 requirenodetailedturbulenceinformationat all.

FlatPlateTurbulentBoundaryLayer

Theflat plate TBL with zero pressure gradient is a fundamental fluid dynamic problem that

has been extensively studied. Initial boundary layer flow property profiles are applied at the

inflow boundary of the computational domain, the flow is propagated downstream, and the flow at

a downstream station is compared with benchmark results. (figure 1)

The direct numerical simulation (DNS, not to be confused with DTNS) results of Spalart

(1988) are used to provide the 'exact' inflow conditions at Re o = 300, and the benchmark

downstream solution at Re o - 1410, where Re o is the Reynolds number based on the momentum

thickness of the boundary layer and freestream velocity. When properly used, DNS is thought to

be as accurate as experimental results, and it provides completely detailed information of the

flowfield, including information needed to calculate k and t_, which are difficult to measure

experimentally.

The grid dimensions are 100 in the streamwise direction, 40 in the vertical direction, and 5

identical planes in the cross flow direction to accommodate the 3D flow solver. The grid is packed

to the wall such that at the inflow boundary y÷ is about 20. The bottom wall has a no slip

boundary condition, the top 'far' wall is a slip wall, the sides are slip walls, and the outflow has a

constant pressure. Convergence was typically obtained in several thousand iterations, depending

on the particular case.

Turbulent Plane Free Shear Layer

The turbulent plane FSL is one of the simplest free shear layers, and it too has been

extensively studied. The computational domain consists of the free shear layer mixing region

only, with the upstream boundary at the trailing edge (TE) of the splitter plate (figure 6). As in the

TBL, the initial profiles are applied at the upstream BC of the computational domain, the flow is

propagated downstream, and the flow at a downstream station is compared with exact results.

The plane free shear layer in the McCormick's (1993) experiment is simulated, and

comparisons are made with data from the extensive flow diagnostics in the mixing region.

McCormick's facility consists of a fan driven wind tunnel, a contoured splitter plate, screens on

one side to slow the flow, and a square test section. The flow velocity on the slower, upper side

(U1) is 4.88 m/s, and the velocity on the faster, lower side (U2) is 8.53 m/s, giving a velocity ratio

of 1 : 1.75. Just upstream splitterTE, the momentum thickness (0) is 1.237mm on the upper/

low speed side, and 0 = 1.107ram on the lower / high speed side. Extensive measurements were

made with triple sensor hot film probes of all three velocity components, including turbulence

properties. The flow was visualized using smoke injection and laser light sheets.

The 'exact' u, k and e profiles at the upstream boundary of the computational domain (i.e.

at the splitter TE) were obtained from a separate DTNS solution to a flat plate TBL, because k and

e profiles at the splitter trailing edge were not measured experimentally. Certainly, the resulting

solution of the FSL will be affected by the accuracy of the DTNS TBL solutions, but they should

be sufficiently accurate for purposes of comparing with other substantially different k and e B C's.

The DNS TBL solutions discussed above could not be used for this purpose, because the Re o
values do not correspond to those at the splitter TE.

The grid dimensions are 60 in the streamwise direction, 39 across the shear layer, and 5
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identicalplanesin thecrossflow directionto accommodatethe3Dflow solver. Thegrid is packed
such that y÷ is between20 and 30 at the inflow boundary. The sidesareslip walls, and the
outflow hasa constantpressure.Convergencewasagaintypicallyobtainedin severalthousand
iterations,dependingontheparticularcase.

RESULTS

FlatPlateTurbulentBoundaryLayer

Figure 2. shows the downstreamdevelopmentof the boundary layer momentum
thicknesses(0) for thesix cases,andtheTBL l/5th power law approximatetheorypredictions
(Kuethe& Chow 1986). Downstreamdistanceis nondimensionalizedasthe Reynoldsnumber
basedon thedistancefrom theupstreamplane(ARex). Cases2 and3 show goodagreementwith
theory. In cases4, 5and6, boundarylayerdevelopmentneartheinflow boundaryis suppressed.
Surprisingly, case1, theideal casewith all turbulencepropertiesexactlyspecified,also shows
slightly suppressedboundary layer developmentnear the inflow boundary. However,
downstreamof the initial discrepancies, all 6 cases quickly approach the same theoretical slope.

At the inflow boundary, ARe x = 0 and ARe o = 300. Comparisons of u, k and e profiles

are made downstream at the ARe x = 551000 plane, where the approximate theory predicts that

ARe o = 1410.

Figure 3a shows the 'exact' u profile, specified at the inflow boundary in all 6 eases.

Figure 3b shows the u profile at the downstream plane. Although the profiles have slightly

different in thicknesses, all have the about the same shape as the DNS solution.

Figure 4a show: the 'exact' inflow k profile used in cases 1,2 and 5; the k profile for I= 1%

used in cases 4 and 6, which is barely visible next to the vertical axis; and the k profile resulting

from upstream extrapolation in case 3. Clearly, I = 1% specifies k to be much lower than it should

be, and upstream extrapolation results in a k that is too high. Figure 4b shows the downstream k

profiles. Despite the drastically different initial conditions, all 6 cases match the DNS solution

shape surprisingly well, but again with slightly different thicknesses.

Figure 5a shows the exact e profile used in case 1, the profiles specified in cases 4 and 5,

and the profiles resulting from upstream extrapolation in cases 2, 3 and 6. Case 3, with both k

and e extrapolated upstream, gives the best prediction of the initial e profile after case 1, but this is

most likely a fortunate coincidence. Cases 2 and 6 results in e profiles that are too low. Case 5

specifies an e profile that is too high. The case 4 profile is not visible on the graph, because, the e

values are all near zero. Figure 5b shows the downstream e profiles. All 6 cases fall on

approximately the same curve, and overpredict e.

Turbulent Plane Free Shear Layer

Figure 7. shows the downstream development of the shear layer momentum thicknesses

(0) for the six cases. 0 is indicative of the amount of mixing taken place between the high and low

speed flows, and is defined as:
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f (u-U2)(Ul-u)O= ( u2- u ) 2 dy
(3)

where U 1 is the mean velocity of the upper / low speed side, and U 2 is the velocity of the bottom /

high speed side.

Downstream distance is nondimensionalized as the Reynolds number based on U 1 and the

axial distance from the computational inflow plane (Rex), which coincides with the trailing edge

(TE) of the splitter plate. Note that near the splitter TE, 0 is actually negative, due to the low

speed flow from the splitter boundary layers. Cases 1, 2 and 4 show good agreement with the

experimental results of McCormick & Bennett. In cases 5 and 6, shear layer development near the

inflow boundary is suppressed. In case 3, the shear layer expands at an unrealistically high rate.

However, the initial discrepancies in all cases except 6 do not persist far downstream, and the

curves shortly approach the same slope.

Profiles of u, k and _ are plotted at three stations: Re x = 0, at the splitter TE and inflow

boundary; Re x = 28244, and Re x = 290510. The experimental data for u and k are available and

plotted for the two downstream stations for comparisons.

Figure 8a shows the 'exact' u profile, used as the inflow BC in all 6 cases. Figure 8b

shows the u profiles at the two downstream stations. AtRe x = 28244, cases 4, 5 and 6 appear to

give the best agreement with data; at Rex = 290510, cases 1 and 2 appear better. In case 3, the

shear layer is far too thick.

Figure 9a show: the 'exact' inflow k profiles used in cases 1, 2 and 5; the k profile for 1 -

1% used in cases 4 and 6 which is too low to be visible on the plot; and the k profile that results

from upstream extrapolation in case 3. Again, I=1% specifies k to be much lower than it should

be, and upstream extrapolation results in k that is much too high. Figure 9b shows the

downstream k profiles. At both stations, cases 1 and 2 give the best agreement with data, cases

4,5 and 6 underpredict k to varying extents, and case 3 drastically overpredicts k.

Figure 10a shows the 'exact' inflow e profile used in case 1, the profiles specified in cases

4 and 5, and the profiles resulting from upstream extrapolation in cases 2, 3 and 6. Case 2

underpredicts e., case 3 creates an unrealistically wide profile, cases 4 and 6 are close to zero and

not visible on the plot, and case 5 specifies an unreasonably high spike. Downstream, since no

experimental data is available for e, it is difficult to tell which results are the most accurate, but

clearly, the case 3 profile is too wide.

CONCLUSIONS

The effects of different turbulence property CFD boundary conditions were examined

using the DTNS flow solver for two classical flows: a turbulent plane free shear layer (FSL) and a

flat plate turbulent boundary layer (TBL) with zero pressure gradient. Six different combinations

of turbulence property boundary conditions at the inflow boundary were investigated. The major

observations and conclusions of the study were as follows:

° Wall bounded turbulent shear flows appeared to be relatively insensitive to the turbulence

inflow BC. Despite drastically different k and e profiles at the inflow boundary, the mean

velocity (u), k and e profiles downstream were nearly identical, and all cases approached

the same correct slope for momentum thickness development. In the near field of the
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inflow boundary,cases1, 4, 5 and6 suppressedthe boundarylayer developmentto
varyingextents. Cases2 and3 gavethebestresults. Discrepanciesin theinitial boundary
layerdevelopmentslightlyaffectedthethicknessesat downstreamstations.

. Turbulent free shear flows appear to be more sensitive to turbulence inflow BCs than the

wall bounded flows. For free shear flows, all cases except 3 gave reasonably good

results, but with more discrepancies between the cases than for wall bounded flows.

Cases 1 and 2 gave the best results. Case 5 inhibited the initial shear layer growth, and

created an unrealistic spike in the e profile at the inflow.

. For free shear flows, case 3 (upstream extrapolation of k and e at the inflow boundary)

gave a drastically high shear layer growth rate. Note that this is the default case for many

flow solvers.

. Overall, when both 'exact' k and e profiles were used, cases 1 and 2 gave the best results.

When only k profiles were used, case 2 was best. When no 'exact' turbulence profiles

were used, cases 4 and 6 gave reasonable results.

. Some additional factors not considered in this study were: compressibility, specifying

different levels of uniform turbulence intensity, specifying different levels of uniform

turbulent viscosity, and more complex flowfields.

. The particulars of these findings may vary for different k -e turbulence models and

numerical schemes. However, it is conjectured that overall 'lessons learned' from this

study are probably applicable to other flow solvers as well.
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Table 1. Turbulence property boundary conditions

Case # k e I /./t

1 exact exact - -

2 exact extrapolated - -

3 extrapolated extrapolated

4 calc. from 1, u calc. from k,/.t t 1% _l,lamin

5 exact ealc. from k,/at - I.tlamin

6 calc. from L u extrapolated 1% -
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ABSTRACT

The exchange of models is one of the most serious problems currently encountered in the practice

of spacecraft thermal analysis. Essentially, the problem originates in the diversity of computing
environments that are used across different sites, and the consequent proliferation of native tool formats.

Furthermore, increasing pressure to reduce the development's life cycle time has originated a
growing interest in the so-called spacecraft concurrent engineering. In this context, the realisation of the

interdependencies between different disciplines and the proper communication between them become
critical issues.

The use of a neutral format represents a step forward in addressing these problems. Such a means

of communication is adopted by consensus. A neutral format is not directly tied to any specific tool and it

is kept under stringent change control. Currently, most of the groups promoting exchange formats are

contributing with their experience to STEP, the Standard for Exchange of Product Model Data, which is

being developed under the auspices of the International Standards Organization (ISO 10303).

This paper presents the different efforts made in Europe to provide the spacecraft thermal analysis

community with a Thermal Neutral Format (TNF) based on STEP. Following an introduction with some
background information, the paper presents the characteristics of the STEP standard. Later, the first efforts

to produce a STEP Spacecraft Thermal Application Protocol are described. Finally, the paper presents the
currently harmonised European activities that follow up and extend earlier work on the area.

ABBREVIATIONS AND TERMS

AAM

AIM

ARM

ANSI

AP

ASCII

Application Activity Model

Application Interpreted Model

Application Reference Model

American National Standards Institute

Application Protocol

American Standard Code for Information Interchange
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ATS ApplicationThermiqueSpatiale
CAD ComputerAidedDesign
CAE ComputerAidedEngineering
CNES CentreNationald'EtudesSpatiales
ECLS EnvironmentalControlandLifeSupport
ESA EuropeanSpaceAgency
ESARADESA'sradiativeanalysissoftware
ESATANESA'sthermalnetworkanalyser
ESTEC
FE
FHTS
FLUOR
ICETAS
IGES
IR
ISO
SDAI
SET
TAS
STEP
TMM
TNF
VDA-FS
YC
YCV

ESA'sEuropeanResearchandTechnologicalCentre
FiniteElements
Fluidloopextensionto ESATAN
CNES'RadiativeAnalysisSoftware
IntegratedCommunicationEnvironmentfor ThermalAnalysis
Initial GraphicsExchangeSystem
IntegratedResources
InternationalStandardsOrganization
StandardDataAccess Interface

Standard d'Exchange et Transfert

Thermal Analysis for Space AP

ISO's Standard for Exchange of Product Model Data

Thermal Mathematical Model

Thermal Neutral Format

Verband Deutschen Automobil, Flaechen Schnittstelle

ESTEC's Thermal Control and Life Support Division

YC's Analysis and Verification Section

THE THERMAL NEUTRAL FORMAT

Standardisation of the analysis tools

The standardisation of analysis procedures has become an essential requirement for the

organisations operating in the European Space sector, due to the complexity found in large space projects

involving international consortia of companies. This standardisation has most obviously materialised in the

availability of a set of de facto standard tools which facilitate the interaction between the different parties

involved in a project. Examples are the ESABASE (ref. [1]), ESATAN (ref. [2]), FHTS (ref. [2]),
THERMICA (ref. [3]) and the recently released ESARAD (ref. [4]) tools.

An important consequence of this situation is that the tool's native formats have also been adopted

as the de facto standards for exchange and archive of thermal models. This seemed quite convenient at a

time when the number of tools was small and no obvious alternative was available. However, this approach
is not satisfactory any longer. In fact, the use of native formats has serious and long reaching implications,

which will be reviewed in the following sections.
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Theproblemof exchange

Theexchangeof thermalmodelsis currentlyposinganumberof seriousproblemsto theday-to-
daypracticeof thespacecraftthermalanalysis.Essentially,theproblemoriginatesin thediversityof
computingenvironmentsadoptedbydifferentorganisations,andtheconsequentproliferationofnativetool
formats.Thesituationcanbeevenmoretroublesomefor thoseorganisationsneedingto maintainseveral
environmentsto servedifferentrequirementsorcustomers.

Furthermore,theorganisationsofteninvestin thedevelopmentof proprietarysoftware,whichis
normallyintendedto servepurposesnotadequatelycoveredbythestandardtools.Thesedevelopments
contributetoenhancethecompanies'competitiveness,bytakingadvantageof in-houseexpertiseandskills.
However,mostofthesetoolsintroducenewexchangeabilityrequirements,aggravatingfurthertheproblem.

Theconcurrentengineeringissue

A state-of-the-artanalysisenvironmentcannotoverlooktheneedtoprovidepropercommunication
meansbetweenthedifferentteamsinvolvedin thespacecraftdevelopment.Indeed,spacecraftengineering
is a truemultidisciplinaryprocess,in whichtheinformationfollowscomplicatedpathsanddifferent
disciplinesinteractin non-trivialmanners.

Traditionally,eachdiscipline'sanalysishasbeenperformedinanuncoupledway,in anattemptto
isolatetheir particularitiesandthusto simplifytheassumptionsandmethodsusedfor eachof them.
However,twomaindevelopmentshaveradicallychangedin thelastyearsthecontextinwhichtheanalysis
takesplace:
• theadvancesmadein termsof computingpowerhaveallowedto performmoreandmorecomplex

analysisinashortertime.Furthermore,thisevolutionhasenabledthedevelopmentof toolsthatmodel
andanalysethephysicalproblemswith fewersimplificationsandrestrictions.

° moreandmorecomplexmissionsimposerequirementswhichcannotbeachievedby performing
uncoupleddisciplinaryanalysis.

With theseideasin mind,thereis an increasingtrendto acknowledgetheinterdependencies
betweendesignandanalysisandto integratethemwithina tightlycoupledprocess.Thisapproachalso
encouragestheconcurrentanalysisof severalphysicalproblemsthroughtheuseof commonmodels,
proceduresandtools.The final objectivesarethoseof streamliningthe flow of informationandof
increasingtheefficiencyandthecapabilitiesof thedesignandanalysisprocesses,whilerationalisingthe
resourcesused.

Twoissuesareparticularlyimportantin thiscontext.Firstly,agoodcommunicationbetweenthe
CADworldandtheanalysisenvironmenthasbecomeanessentialrequirement.Indeed,althoughtheflow
ofinformationbetweendisciplinesdependsonseveralorganisationalissues,theinitialstageis typicallythe
acquisitionof configurationaldatafromtheprojectsource,whichin generalisaCADsystem.Secondly,
propercommunicationto commercialfinite element(FE)packagesis moreandmoreimportant.The
continuousevolutionof thesetoolsin thelastyearsmakesthemveryattractiveto bothmanagersand
engineers.FEpackagesprovideaframeworkwhichcanbeusedtointegrateindividualdisciplinetoolsto
yieldthedesiredmultidisciplinaryanalysiscapability.Althoughfinitedifferencesremainsthemethodof
choicein spacecraftthermalanalysis,thedrivetowardsconcurrentengineeringis likely tofostertheuseof
FEtoolsin thefuture.
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Theproblemof archive

Theexchangeabilityrequirementscanbeextendedquitenaturallyto thearchiveandretrievalof
analysismodelsandresults.Afterall, onecanconsiderarchivingasanexchangeacrosstime.Indeed.an
archivedmodelmightnot run properlywhenretrievedbecauseof the evolutionof the tool andthe
incompatibilitybetweendifferentversions.An extremecase,but notunlikelygiventhetypicallylong
durationof thespaceprojects,wouldarisewhenthetoolsonceusedin a projectarenotavailable(or
supported)anymore.

A furtherreasonmakingthe casefor stablearchivemeansis theneedto performoccasional
emergencyanalysiscampaignsto copewithspacecraftoperationmodesthatfollowunexpectedeventsor
failures.Undertheurgencyof thesesituations,costlymodificationsto thearchivedmodelsaresimplynot
acceptable.

Theneedfor aneutralformat

It isclearthattheuseof nativeformatsasameansof exchangebringsaboutseriousproblems.For
instance:
• theiruseencouragestheproliferationof tool-to-toolinterfaces.Obviouslythis isnotthemostefficient

waytoexchangedatabetweenagivennumberof softwarepackages.
• nativeformatsareintrinsicallyunstable,i. e.theyevolvewithtime.Therefore,thesoftwareinterfaces

thatread/writenativeformatshaveto beconstantlyupdatedin orderto keepupwith newversionsof
thetools.

• the interface developers need to have a complete, updated description of the two formats being inter-

faced. This might be a problem if, as usual, the interface developers are not in control (at least one) of
the formats. This fact increases the chances of software interfaces lagging behind the evolution of the

tools, or simply being obsolete.

• organisations may have to develop different interfaces to satisfy each major customer's requirements.

The extra costs incurred by this practice are frequently absorbed by the customer.

The use of a neutral format overcomes these serious problems. Such an approach is adopted by

consensus as a means of exchange and archive. A neutral format does not depend on any specific tool and

it is kept under stringent change control. The neutral format system consists not only of the description of
the data intended to be exchanged or archived, but also of a formalism describing the means for exchange

or archive and of the interfaces to other formats.

According to ref. [5], a Thermal Neutral Format (TNF) shall fulfil the following requirements:

• the TNF shall ultimately support the domain relevant to all the software tools used to perform thermal

analysis.

• the interfaces in both directions (TNF to native format and vice versa) shall preserve the integrity of the

information being exchanged or archived.

• the TNF shall be flexible enough to allow its extension without modification of the existing features.

• the TNF shall allow the selective treatment of the data. That is, each interface shall be able to process

only the data relevant to the interface.

• the TNF shall be portable across systems and sites.
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A TNFshouldalsobenefitof alargescope.Indeed,awidelyspreadstandardformalismshouldbe
usedto supportthedataexchangedor archived,simplybecausecommercialCAD/CAEandFEtoolsare
morelikely to includebuilt-ininterfacestointernationallyacceptedstandardformats.Thedevelopmentof
a specificformalismfor theTNF wouldnotonly wasteeffortsbut alsolimit its immediatescopeof
application.

Finally,it is importantto noticethatwereaTNF available,thedevelopmentof interfacesto and
fromtheTNF wouldnormallybe left to thetooldevelopersthemselves.Thiswouldlikely give better
chancestohaveinterfacesup-to-datetothelasttoolversions.

Initiativesin thefieldof ThermalModelexchangeandarchive

Althoughtheproblemsdescribedin theprevioussectionshavebeenaroundfor a longtime,the
developmentof aTNF,basedona broadconsensuswithin theEuropeanSpaceIndustry,hasnotbeen
attempteduntil recently.However,a numberof initiativeswerebornwith the intentionto addressthe
problemsinonewayoranother.

As previouslycommented,nativeformatsweretypicallyexchangedbetweensites.TheThermal
MathematicalModels(TMM) exchangedbymeansof ESATANinputdecksareaclearexampleof this
approach.Astheneedto exchangegeometry-basedmodelsgrew,therequirementforanewformatbecame
obvious.Forthatpurpose,theESABASE[4]languagestartedtobeused.AlthoughESABASEis basically
a systemengineeringpackage,its inputlanguageprovidesa meansto defineanalysis-tool-independent
models.Furthermore,theESABASEframeworkincludestranslatorsto severalradiativeandthermal
packages.However,theESABASElanguagedependsitselfontheevolutionof theESABASEsoftware,
andit hasaratherlimitedscope.

AnotherESA'sinitiative,ICETAS(ref.[6][7]),wasnotoriginallyanefforttoprovidesolutionsto
theproblemsofexchangeandarchive.Rather,it addressedtheissueofintegrationofthermalsoftwaretools.
Nevertheless,asworkonICETASprogressedtheseaspectsbecameveryrelevant.Furthermore,theproject
producedadescriptionof thecompletesetofdatarequiredtoperformSpacecraftThermalAnalysis,aswell
astheirinterrelationships.Thisinformationisclearlyveryrelevanttothedevelopmentof aTNF.

TheSET-ATSprotocol

AnimportantinitiativehasrecentlybeenundertakenbyCNES,theFrenchSpaceAgency,inorder
to provideaTNFbasedon theFrenchstandardSET.CNEShavedevelopedthe"ApplicationThermique
Spatiale"(ATS)ApplicationProtocolto addressthespacecraftthermalanalysisexchangeandarchive
requirements.

Thefirstversionof theprotocol(ref.[8])providedsupportfor threemajorcategoriesof entities:
• geometricalentitiesextractedfromasetof primitiveshapes,whicharemeshedandhavethermo-opti-

calpropertiesattachedtotheirfaces.Theseentitiescanbeassembledto buildhierarchicalmodelscon-
tainingmultipleoccurrencesof sub-models.

• resultsof calculations(processing)associatedtogeometricor thermalnodes.
• -anentitycontainingthedataneededtocharacterisetheorbit.

In additionto thesecategories,the"neutralfile header"and"neutralfile summary"entitiesdefine
therequiredadditionalinformation(origin,dateof issue...)for exchangeandarchivepurposes.
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Followinga first implementationandtest,a secondversion(ref. [9]) hasextendedtheoriginal
protocolto improvethesupportfor:
• orbit and kinematic extensions. Orbital data locate the satellite, considering it as a point in space (its

centre of mass). Kinematics data give the attitude of the satellite and its moving parts with respect to

the planet and the Sun.

• geometrical features. The set of elementary surfaces has been extended to take into account boolean

operations and high-level shapes. The boolean operations (union and difference) can be used to gener-
ate complex geometry by combining elementary surfaces. High-level shapes, which have an associated

type (e. g., box, cylinder ...), allow the easy manipulation of collections of elementary surfaces.

• language features such as comments, numbering and labelling, mainly introduced for man-machine

interface purposes.

With this extended support, the new version aims to cover the main capabilities of the FLUOR,

THERMICA ESABASE and ESARAD radiative analysis software.

The ATS protocol is based in the data and mechanisms defined in the SET Z68-300 standard, which

is implemented in a large number of CAD/CAE software packages and used extensively in the European

Aircraft Industry. The protocol, which covers some domain specific requirements, makes use of a subset of

the generic entities available in the SET language. Moreover, some items of information, not covered by the
SET standard, required the addition of new blocks and sub-blocks which can only be used by an interface

that recognizes their format and semantics. Consequently, a correct SET-ATS interface will generate a SET

physical file syntactically compliant to the SET standard. A standard SET interface will read these files,

although it will be unable to interpret the parts of the information specific to the ATS protocol.

THE STEP STANDARD

Description of the standard

Work on communication standards between CAD/CAE systems has been under way since the

beginning of the eighties, resulting in the development of several exchange formats like IGES, VDA-FS or
the above mentioned SET. Currently, most of the groups promoting these exchange formats are contributing

with their experience to STEP[10], the Standard for Exchange of Product Model Data, which is being

developed under the auspices of the International Standards Organization (ISO 10303).

STEP was first proposed in 1984, with the intention to provide a worldwide standard supporting the

complete representation of a product throughout its life cycle. STEP is different to other exchange formats

in that rather than only providing rules to format a defined set of data, it is also supplying a methodology to

formally describe the data and to implement the format. Furthermore, conformance testing to the standard

is an integral part of STEP. From this point of view, STEP goes beyond the concept standing behind other

exchange standards, by providing a standardised methodology to define application-specific product data

standards. Other advantages with respect to existing standards are:

• because of the broad international consensus built around it, STEP is likely to meet the requirements set

by many different applications.

• STEP establishes a separation between the logical design of the data and the physical implementation.

• the use of a formal language removes ambiguity and enables a rigorous conformance testing. Further-

more, automatic software generation from the EXPRESS specification becomes possible.
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STEPconsistsbasicallyof aseriesofcomponents(called parts in the STEP terminology). Each of

the parts are published separately, to help coping with their different degree of maturity. The main parts are:

• the EXPRESS[Ill language, developed on purpose for STEP. EXPRESS is a formal information mod-

elling language used when describing the STEP entities, with the intention to ensure consistency and

avoid ambiguity.

• resource information models defining the basis for the development of application standards. The so-

called Integrated Resources fiR) are in fact the basic building blocks used to define the application

standards. They provide a unique representation of each element of information used within STEP.
These resources can be either Generic Resources, i.e. of potential use for any type of application, or

Application Resources, valid only for specific applications. The EXPRESS language is used to define
the IR.

• Application Protocols (AP), which are the actual application-oriented standards that end-users will take
for their exchange and integration needs. The APs are logically self-contained and complete.

• implementation methods supporting the data models provided by STEP.

• strict conformance testing procedures and tools to control and to certify compliance to STEP APs.

Theretore, the EXPRESS language is used in the definition of the Integrated Resources, from which

the Application Protocols are derived (these can also use directly EXPRESS). A STEP implementation is

produced when an Implementation Form is chosen. This implementation can be tested for conformance to
the standard using the STEP-supplied methodology.

STEP is also to play a role in the issue of integration. Indeed, there are several possible

implementation forms of the STEP standard. Today, the only implementation in place is the physical

transfer file, but work is progressing in the definition of the Standard Data Access Interface (SDAI), which
will introduce a software layer representing an abstract, "'EXPRESS"' view of the data to be transferred or

stored. The SDAI will provide in practice interfaces to both relational and object STEP databases.

STEP Application Protocols

As mentioned previously, STEP provides a standardised methodology to develop protocols

oriented to specific fields of application. The development of a particular AP stems from the specification

of the scope and the information requirements of the AP. This is achieved by means of the Application

Activity Model (AAM), which describes the processes, information flows and functional requirements of

the application. The AAM helps to understand the nature of the activities and the role of the product data in

the field of application. The AAM is included as an informative annex to the AP.

A more detailed Application Reference Model (ARM) specifies the information requirements and

constraints of the AP, in terms of the so-called Units of Functionality. These units contain information about

the entities, attributes and relationships that determine a given concept within the ARM. Although the ARM

is defined by means of a formal data description language, application-specific terminology is used in this

model. The ARM is also appended as an informative annex to the AP.

After the ARM is defined, the Application Interpreted Model (AIM) specify the manner in which

the Integrated Resources can be used to satisfy the AP requirements. The resource constructs can be used

directly, or refined depending on the application requirements.

Finally, the APs shall include the conformance requirements to be satisfied by any implementation

claiming to support the AP. Such an implementation is tested by performing a conformance test based on a
set of abstract test cases.
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STEPandtheTNF

SeveralfundamentalSTEPpartsarealreadyavailableeitheras International Standard or Draft

International Standard. These parts include the EXPRESS language, the Physical File Exchange Structure,

the conformance testing methodology, some Integrated Resources and some Application Protocols. A

significant number of other IR and AP are being developed, with many of them close to achieve a stable
state.

Certainly, the transition from current exchange standards to STEP will take some time.

Nevertheless, enough progress has been achieved to appreciate the relevance of the STEP technology to the

development of a TNF. Indeed, STEP is an obvious candidate for the TNF, because in addition to its

intrinsic advantages as product data standard, it fulfils the basic requirements for a TNF:

• it is a neutral format that satisfies the needs for stability and tool-independence.

• its broad scope will allow immediate communication to the CAD and FE worlds.

In summary, STEP provides an excellent methodology to develop a Spacecraft Thermal

Application Protocol. For the first time ever, the thermal analysis community might have the possibility to
use a TNF tailored to its needs, but at the same time enjoying the character of full international standard.

DEVELOPMENT OF THE STEP THERMAL AP

CNES' STEP-ATS Application Protocol

Based on the experience gained in the production of SET-ATS, CNES undertook the development

of an application protocol using the technology and methods developed for STEP (ref. [12]).

This application protocol was developed in conformance to the rules put forward in the "Guidelines

document for development of STEP protocols". However, the complete process of Integration and

Qualification imposed by ISO on the 10303 Parts was not followed. In particular, the Application Activity

Model was not produced. On the other hand, the application protocol was developed by using, as far as

possible, resources defined in ISO 10303. However, due to the fact that STEP is still in evolution, some of

the required resources are not yet available in the standard. Therefore, these specific resources had to be

produced in order to meet the application requirements. With these limitations in mind, the STEP protocol

was defined to match the user requirements associated to the first version of the SET-ATS protocol.

The first stage of the development consisted in the specification of the information requirements in

terms of units of functionality, application objects and application assertions. This stage defines the product

data as viewed by the application users. The models are specified to have a tree structure including

occurrences of sub-models. Any sub-model can also contain surface data representing a part of the

geometry. Information related to the meshing and to the physical properties of each face is attached to the

surfaces. Moreover, the protocol supports the transfer of the data needed for the orbit determination and the

results of the thermal analysis. Finally, it includes the information related to the management of the

exchanged models (designer, creation date, entity labels, colour for possible graphical display, grouping of
entities into cells ...)

The information requirements are specified in terms of:
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• Units of Functionality that allow the classification of the application objects into coherent groups such

as geometry, therm0-optical properties or model structure.
i

• application objects such as surface type, mesh characteristics and orbit parameters. These objects are

atomic elements that embody a unique application concept and contain attributes specifying the data

elements of the object.

• application assertions that specify the relationships among application objects. For instance, "meshing
of a Thermal_face is defined by one Mesh_characteristics", "a Mesh_characteristics applies to one

Thermal_face" or "a Thermal_face has at most one Mesh_characteristics"

A graphical representation, using the EXPRESS-G notation, describes the structure and constraints

of these application requirements (see Figure 1).

Following the definition of the information requirements, the Application Interpreted Model was

then produced to specify the references to the STEP Integrated Resources. For each Unit of Functionality

and application object, the so-called Mapping Table shows the correspondence between the information

requirements and one or several AIM resource constructs.

Finally, the AIM's EXPRESS annotated listing was produced to present the complete listing of the

types, entities and rules necessary to fully specify the AP.

It is important to note that the move from SET to STEP does not only represent a change in the
neutral file physical format but also demands the evolution of the requirements (or at least of the way to take

them into account). As a matter of fact, STEP promotes the concept of product whereas SET deals mainly

with geometrical models. Although the STEP AP development process is more complex, the possible scope

of the AP is much broader. Furthermore, it encourages an approach which is consistent with data

representation requirements appearing in other stages of the spacecraft design.

P I__ pf_K_ nir_*

I..........I "°"-°

FIGURE 1. EXPRESS-G diagram presenting the information related to the
Model_structure unit of functionality
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ThermalAnalysisfor SpaceAP

TheindependenteffortsundertakenbyCNESandESAin 1993hadsimilartimingandobjectives,
sinceboth intended to produce a STEP Application Protocol for Spacecraft Thermal Analysis. Thus, it
seemed reasonable to start a harmonisation process in order to reduce the chances of duplicating work.

Furthermore, it seemed sensible to rationalise the efforts by making an efficient use of the knowledge gained

by both CNES and ESA in the matter.

This harmonisation was fully achieved in early 1994 in the form of an activity to develop an

Application Protocol on Thermal Analysis for Space (STEP-TAS). Previous experience coming from the
STEP-ATS and the ICETAS projects was directly fed into the new project.

The harmonised work set off with the fundamental objectives of:

• merging the domain information models developed independently by CNES and ESA. Consensus in

the Application Activity and Application Reference Models will result from this merge.

° extending the AIM developed by CNES to support a subset of the domain information requirements

mentioned above.

• demonstrating the exchange of thermal models via STEP files. For that purpose a prototype facility is

being developed to communicate FLUOR and ESARAD.

Results produced in the first stage of the harmonised effort are expected towards the end of 1994.

CONCLUSIONS

The concept of neutral file contributes in a very significant way to streamline the exchange of

information, as proved by the development and use of the SET-ATS protocol. Modern product data

technology, commonly associated to STEP, ensures the development of non-ambiguous domain-specific

protocols which provide solutions not only to the information exchange problems but also to the integration

of applications. However, the matter of successfully introducing a TNF in the spacecraft thermal analysis
community remains largely a problem of consensus. Currently, a harmonised effort CNES/ESA is under

way to provide a unique description of the information requirements in this domain. If an agreement is

reached on the suitability of this logical description, the STEP technology is ready to produce an

implementation of the TNF.
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Summary

The application of spectral methods, using a Chebyshev collocation scheme, to solve hydrodynamic
stability problems is demonstrated on the Benard problem. Implementation of the Chebyshev collocation
formulation is described. The performance of the spectral scheme is compared with that of a 2nd order
finite difference scheme. An exact solution tothe Marangoni-Benard problem is used to evaluate the

performance of both schemes. The error of the spectral scheme is at least seven orders of magnitude
smaller than finite difference error for a grid resolution of N = 15 (number of points used). The

performance of the spectral formulation far exceeded the performance of the f'mite difference formulation
for this problem. The spectral scheme required only slightly more effort to set up than the 2nd order f'mite
difference scheme. This suggests that the spectral scheme may actually be faster to implement than higher
order finite difference schemes.

1.0 Introduction

The theory of hydrodynamic stability has helped to explain and predict a variety of fluid

flow phenomena. Recently it is being used to guide the modem computational fluid

dynamicist in choosing the appropriate parameter values which are needed to simulate

fluid flow behavior of interest (NASA TM-4569, 1994). Many current applications of

hydrodynamic stability theory are possible because the field has benefitted greatly from

the development and refinement of computational tools in addition to the existence of

increasingly powerful computers. Spectral methods is one such set of tools that has been

successfully applied to obtain high accuracy hydrodynamic stability results to previously

intractable problems.

The purpose of this paper is to show, by example, the use of a spectral collocation

formulation to solve hydrodynamic stability problems. Our discussion will be confined to

the linear stability analysis which is the foundation of hydrodynamic stability theory (Lin,

1945). The linear stability problem ultiriaately reduces to a matrix eigenvalue problem,

and the peril of the eigenvalue problem is that it requires O(N 3) operations to obtain the

eigenvalues where the matrix is N x N. As shown herein, the high accuracy of spectral

methods results in small N, therefore considerably less CPU time is required to solve for

the eigenvalues when compared to finite difference methods.
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The Benard problem is used to illustrate the implementation and performance of the

spectral scheme. The problem is also solved using a 2nd order finite difference scheme

which required slightly less time to implement. Results of the two numerical schemes are

compared to the exact solution of the Marangoni-Benard problem (Pearson, 1959).

The Benard problem is described, and the governing equations and boundary conditions

are developed in the following section. After a brief description of the finite difference

scheme, the spectral collocation formulation is discussed. Results from both numerical

schemes are then compared to an exact solution of the Marangoni-Benard problem. The

spectral scheme yields results with considerably better accuracy using an order of

magnitude less points than the finite difference scheme.

2.0 Description of Benard Problem & Development of Equations

A temperature difference is imposed normal to the free surface of a thin liquid layer of

fluid of infinite horizontal extent and finite thickness, d, as shown in Figure 1.The initial

steady state or base state of the system is one of no fluid motion, with a linear

temperature profile across the layer. The velocity and temperature profiles illustrated in

Figure 1 can immediately be expressed as, U_ = 0 and T_ = T_0 -13z'. Using the notation

of Pearson (1958) and Chandrasehkar (1981), U_ and Tb are respectively, the base flow

velocity and temperature. The temperature gradient of the base state, 13is defined as

13=-dT_/dz'or 13= AT_/d where ATj = T_0- T_s. The asterisk, "*" denotes dimensional

quantities. The lower surface is rigid and is held at a constant temperature. The upper

surface is free and exchanges heat with the environment. The free surface is assumed flat

which is physically justified for many terrestrial problems. We first give the

nondimensional form of the governing equations and in the next section we linearize

about the base state just described in order to determine whether small disturbances to the

base state will grow or decay. Specifically we are interested in the critical values of the

nondimensional parameters where the change of stability occurs.

z*-

Q Q

,if

T_
: = -13

too •-_X o

Figure 1 Base State For Thin Liquid Layer Of Infinite Extent

Nondimensional forms of mass, momentum, and energy equations for an incompressible

fluid with the Boussinesq approximation are given in equations (1) through (3). The

derivation of these equations with the Boussinesq approximation and constant viscosity

and their subsequent nondimensionalization are well known and we refer the interested
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readerto Chandrasekar(1981),andDrazin& Reid(1982)for details. All
thermophysicalpropertiesareassumedconstantapartfrom densityandsurfacetension.

V.O=0 (1)

DO = __p + f_. Ra Pr(T - Tb0) + Pr V20 (2)
Dt

DT _2 y (3)
Dt

0, T, P, t are the velocity vector, temperature, pressure, and time respectively. The

reference values used to nondimensionalize the variable; length, velocity, temperature,

p0_:0/d , d/K 0 , respectively. P0 is the fluidpressure, and time are d, K_ / d, 13d, • • / 2 z *

density and K 0 is the fluid thermal diffusivity. The subscript 0 indicates that the

properties are chosen at the lower surface temperature, Tb0" The characteristic value of

the dynamic viscosity of the fluid, p., is denoted as p._. These reference values are

consistent with those used in the buoyancy instability studies presented in Chandrasekhar

(1981) and Drazin and Reid (1982), and the surface tension instability investigations of

Pearson (1958) and Striven and Stemling (1964). Two dimensionless groups appear in

the momentum equation, the Prandtl number, Pr, and the Rayleigh number, Ra, which

are defined as follows:
• ¢'1S4_*

Pr = _to Ra = P°Po g0gz

_ is the volumetric thermal expansion coefficient and gz is gravitational acceleration in

the negative z-direction. The dot product of the unit vector in the z direction, 1_, and the

buoyancy (RaPr) term in equation (2) indicates that buoyancy only acts in the vertical

direction. Therefore the Rayleigh number only occurs in the z-momentum equation.

The nondimensional boundary conditions are given by equations (4) and (5). Equations

(4a,b,c), represent the no-slip conditions and impenetrable wall condition at z=0.

Equation (4d) is the constant temperature condition along the wall. The normal stress

boundary condition reduces to (5a) when the free surface at z=l is assumed to be fiat.

Boundary condition (5b) is the heat flux balance at the free surface, where Q* is the

dimensional surface heat flux to the environment and k_ is the fluid thermal conductivity.

Equations (5c and 5d) are the tangential force balances along the free surface, in the x and

y directions, respectively.

At z = 0; 0(0) = (U x,U:.,U,) = 0, T(0) = Tb0 (4a,b,c,d)

aT
At z = 1" Uz(1) = 0; m + = 0, (5a, b)

' az l%p

(5c,d)
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^C3 _. ^
The operator, V,, is the surface gradient defined as i m + j _ where, i and ] are unit

oy
vectors in the x and y directions respectively. The Marangoni number, Ma, which occurs

equations (So,d) Y0,in is defined as: Ma = 13dr2_ The parameter, is defined as
aT*_¢0_0 Tb,

and is often referred to as the temperature variation of surface tension (Nield 1964 and

Adamson 1967) or differential coefficient of surface tension change with temperature

(Scriven and Sternling 1964). The surface tension, or', does not appear in our equations or

boundary conditions since we have assumed a flat interface. Further discussion of the

nondimensionalization of the free surface boundary conditions is found in Scriven and

Stemling (1964), and Koschmeider (1993).

The surface heat flux, Q*, has to be expressed in a form that is suitable for linearizing the

heat flux boundary condition, equation (5). This is accomplished by expanding Q* about

the base state surface temperature, T_s. The first order expansion is given by equation

(6). As previously noted, the base state varies only in the z-direction. Therefore, Q" (Tbs)

can be re-expressed as equation (7), using Fourier's law.

a_TT'_
Q" = Q' (T_,) +-_-_. (T" - T_,)

.

Q'(T;,)=ko-_-z, .d=k;13

(6)

(7)

Substituting equation (6)into equation (5b), using k_fl in place of Q' (Tbs) and defining

h' = 0Q___T;, "the heat flux boundary condition becomes:

aT+ 1+ Bi(T_ - Tbs) = 0 (8)
az

h'd

The dimensionless group, Bi s, is defined as Bi_ = _ and is referred to as either the

surface Biot number (Pearson, 1958 and Nield, 1964) or the surface Nusselt number

(Scriven and Stemling, 1964).

We note that the three-dimensional mass, momentum, and energy equations are given in

equations (1-3), yet the boundary conditions are only specified in the z-direction. After

linearizing the problem and applying some vector operations, it is shown in the next

section, that the governing equations and boundary, equations in the x and y directions do

.not affect the stability of the base state. Equations (1, 2, 3, 4, and 5a,c,d and 8) make up

the system which we will linearize in the next section.
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2.1 Linearization of The Governing Equations

The dependent variables are written in terms of the following base flow and perturbation

variables: 0 = _, T = Tb + 0, AP = APb + Ap

After substituting for T b and VT b, the disturbance equations become:

= -Vp + 1<. Ra PrO + Pr _,2fi (9)
&

--- u. = V20 (10)
cOt

1_ is the unit vector in the z-direction shown in Figure 1. The curl operator is applied

twice to the momentum equation, equation (9), which yields equation (11 ).

_V2u:( ] - 1_.RaPr V20 + Pr V4_ (11)
0t 11

The first curl operation yields the vorticity equation and eliminates the pressure terms.

The second curl operation decouples the momentum equations from each other. The x

and y momentum equations become uncoupled from the z-momentum and the energy

equations. The z-momentum and energy equations remain coupled through the buoyancy

term in equation (11), the convective term in equation (10), and the tangential boundary

condition (discussed below). Furthermore, the relevant stability parameters, Ma and Ra,

do not appear in either the x or y momentum equation or their associated boundary.

conditions. Given these considerations, equation (11) reduces to the scalar equation in u z,

equation (12).

&
- Ra Pr V_0 + Pr V4uz (12)

The boundary conditions for the perturbed variables associated with equations (10 and

12) are given by equations (13) through (14).

At z = O,

Atz = 1,

u_=O; _=couz O; 0=0
_z

uz=0; _z + Bis0(1) = 0

-(v,:,u, O_Uz_ "" "-':"

(13a,b,c)

(14a,b)

(14c)
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2.2 Normal Mode Analysis

Since equations (10) and (12) are linear, we assume solutions for u z and _ are of the

form:

u z = w(z)e i('_x+"'y)÷x' and 0 = _b(z)e '(_'x÷_'y)÷_''

ct x and Oty are the dimensionless wavenumbers in the x and y directions, and 9_ is the

dimensionless frequency. Substituting these into equations (1 O) and (12 ) results in the

following ordinary differential equations.

_.d_(z) - D_d_(z) + ot2#(z) - w(z) = 0

)_(D2w- a2w(z)) = Ra Pr(D2_ - a2_) + er(D4w - 2c_2D2w +o_4w(z))

Where D = _d and ¢x2 = _2 +et2y.
dz

(15)

(16)

The boundary conditions at z = 0 become:

w(0) = 0, Dw(0) = 0, d_(0) = 0. (17a,b,c)

At z= 1, the flat interface condition, heat flux condition, and tangential stress boundary

condition are:

w(1) = 0, Dd?(1) + Bisd?(1) = 0, D2w = -ct2Ma#(1) (18a,b,c)

Equations (15 through 18) are solved to determine whether the velocity and temperature

disturbances grow or decay for given combinations of the relevant parameters. The

relevant parameters are Ma, Ra, and o_. Our problem is also referred to as a temporally

developing flow problem since the disturbance growth or decay is in time. For temporally

developing flows, o_x and Oty are real and the eigenvalue, L, is complex. If the real part of

is positive the disturbance grows, if the real part of _. is negative the disturbance decays

in time and if _. is zero, the disturbance persists unchanged in time.

3.0 Discrete Formulations

Two discrete formulations will be applied to the Benard problem, a 2nd order finite

difference scheme, and a spectral collocation scheme. Irrespective of the discrete

formulation the goal is construct a set of linear equations in form of the general

eigenvalue problem, Ax = _.Bx. Once the eigenvalue problem is setup, solution

mechanics are identical. If B is cheaply invertible, it usually pays to reduce the problem

to a regular eigenvalue problem of the form Cx =_.x, where C = B-1A. In this study we

used standard QR and QZ eigenvalue subroutines from the IMSL library to solve for the

eigenvalues.
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3.1 2nd Order Finite Difference Scheme

Equations (15 through 18) were discretized using a standard central difference scheme.

Boundary conditions result in solving 2N-1 equations for this formulation. The

discretized governing equations, equations (19) and (20), were arranged in the form

Az = LBz, which is the generalized eigenvalue problem. Coefficients, a through g, and r

are constants.

a w,__, +bwi_ 1+cw i +dwi. I +ewi+2 +r_i = X(fwi_l +gwi + fwi+l)

f(_i-I "1" gl_i 4" f_i+l q- Wi = _'(l_i)

(19)

(20)

Here the boundary conditions for Eq (15) are applied only to the i = 0, 1, N-I, N

equations and for Eq (16) only to i = 0 and i = N.

B is a nonsingular matrix so it is possible to reduce the system to a regular eigenvalue

problem of the form Cz = B-_A = Xz. Assuming a flat interface ensures that B is a

tridiagonal matrix which can efficiently be inverted using a tridiagonal solver. The

problem was discretized in terms of one fourth order equation, and one second order

equation, which yields A and B matrices of rank 2N+2. Three of the six boundary

conditions are Dirichlet boundary conditions which reduce the A and B matrices to rank

2N-1.

3.2 Chebyshev Collocation Spectral Scheme

The key to all spectral techniques lies in the possibility of expanding smooth functions in

terms of rapidly converging sums of certain orthogonal basis functions. For example,

consider any reasonable function f(x) defined in the domain -1 _<x _<1 ( see Canuto et.

al. for a precise definition of"reasonable"). The function can be represented as a sum of

Chebyshev polynomials, T, (x), of the form:

f(x) = £_T_(x) (21)
n=0

The crucial thing is that the sum converges very rapidly if f(x) is smooth so one can

truncate it at N terms and accurately represent the function with a minimal set of numbers

{_,: n = 0..... S}. Such an expansion can be viewed as a very efficient and only slightly lossy

compression technique for functions.

Pure spectral methods proceed by expanding the unknowns in terms of truncated sums of

certain polynomials having excellent convergence properties (often simple combinations

of Chebyshev polynomials that automatically account for any boundary conditions that

must be satisfied by the function). The sums are then substituted into the differential

equation and the coefficients are picked to minimize the residual. The fundamental

quantities of interest in this procedure are the coefficients in the expansions of the

dependent variables.
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Spectralcollocationmethodson the other hand, concentrate directly on the physical space

representation of the unknowns and as a consequence are more easily understood by the

naive user. For example, in a collocation technique our hypothetical function, f(x) is not

stored as {i;: n=0 ..... N}, but instead as {(_= f(x_): i--0 ..... N}. The exact correspondence

between the two representations is maintained by choosing the physical space grid {x_ }

in an optimal fashion that is related to one of the Gaussian integration formulas. A typical

formula of choice for Chebyshev expansions on the domain [-1,1 ] is the Gauss-Labatto

grid, x_ = cos(ire / N). The spectral space and physical space representations can be

interchanged with essentially no error (except perhaps for aliasing errors). Moreover, if

the expansion is in terms of Chebyshev polynomials or trigonometric functions, the

transformations to and from spectral space can be carried out efficiently by using Fourier

Transforms (FFT's).

Solving differential equations obviously requires that the derivatives are evaluated. One

method of evaluating {t?- f'(x_)} is to proceed as

That is, one first transforms to spectral space where a derivative is taken rapidly by using

some simple properties of the basis functions. The new series produced in this fashion is

then transformed back to a physical space representation. In the case of trigonometric or

Chebyshev expansions, the procedure is dominated by the FFT's used in the

transformations, so the total cost is O(N log N) operations.

There is a mathematically equivalent approach which uses matrix-vector multiplies to

express
N

= _ D,]fj (22)
j,,0

where the elements of the derivative matrix D can be found in spectral texts such as

Canuto et. al. To evaluate the derivatives on the entire grid using this method will take

O(N :) operations. However, the matrix-vector multiply approach is the only one possible

for eigenvalue problems where the aim is to turn the linear differential operator into the

equivalent matrix operator on the discrete grid. Thus for example, the continuous

equation, Kf= f", becomes the discrete equation, _,f= D2f, so that in theory one simply

fills and then squares the D matrix before feeding it to a standard matrix eigenvalue. In

practice, the greatest programming labor is in the implementation the boundary

conditions.

For the Benard problem, it is convenient to define the matrix operator

L = D 2 -ot2I (23)
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whereI is the identitymatrix.Thecontinuousequations,(15)and(16)thenbecomethe
discreteequations,(24)and(25)

Pr(L2w- ct2RaI_j)= _.Lw

L(I)+ Iw = _.I_

(24)
(25)

andtheseequationscanberecastinto thestandardform Au = _.Bugivenby equation
(26).

Eo]Iw]"Pr L2 -ot2Ra Pr I = _. L

I L 0 I d_
(26)

This translation of a continuous problem into a discrete one is very natural and can be

carried out even more rapidly than the corresponding process for a finite difference

scheme. However, this matrix eigenvalue problem as it stands does not take the boundary

conditions into account. Most of the coding complexity that is present in spectral

techniques (which by nature are global approximations) arises because of the need to

implement boundary data (which are local point conditions).

The boundary conditions and governing equation are first mapped from the z variable in

the domain [0,1 ] to x defined on [- 1,1 ] by x = 2z- 1. The mapped boundary conditions

become:

At x =-I (i=n): w. = _-'_D_iw i =d_ i =0 (27)
i_0

N N

Atx= +1 (i=0): Wo = Bi,Oo +_'_DoiO_ = a2MaOo_-".D2o, W_ =0 (28)
i=O i=O

We immediately see that w 0 = w N = _r_ = 0. The remaining equations can be used to

simultaneously solve for w_, wN_ _, and d_0in terms of the other wi's and _,'s as shown

in equation (29). Equations (29) reveal that elements, w I and wN_ t, are coupled to the

d_'s through the last boundary condition in equation (28) while _0 remains uncoupled

from the wi's.

N-2

Wl = ZCiWi'b_0,

i=2

N-2 N-I

WN-I = Z di w i "+" I_0' I_0 = Z ei_i ( 29 )
i=2 i=l

The boundary condition information is used to reduce the rank of the eigenvalue problem

which is given by equation (30).

2N+I 2N+I

Aijuj = _. _ Bijuj
j=O j=O

(30)
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Thefirst N+ 1componentsof the vector u here corresponds to {w_" i = 0,..., N } and the

last N+ 1 components corresponds to {d_" i = 0 ..... N}. Applying the six boundary

conditions, we can eliminate the rows corresponding to w 0, w t , WN__,W N , _b0, and _bN and

expand equation (30) as given below.

AilUl +AiN-IUN-1 +AiN+IUN+I

2N+I

+ Z Aijuj =

j=2

j)N-I.N.N+I

2N+I 1k SilU 1 +BiN_IUN_ I +BiN+IUN+ I + j._.2nijuj]

j.N -I'_N,N+ I )/

(31)

where we have already used the data, u 0 = u N = u.,s+ , = 0 (which corresponds to

w 0 = w N = d_s = 0). Using the remaining boundary conditions, equations (29), take the

form

N-2 2N

Ul = ZCjUj = ZCjUj'

S=2 j=2
j_N-,.N.N+'

N-' 2N

uN+,=Zeju --
j=l j=2

j_N-I.N.N+I

N-2 2N

US-' = Z djuj = _"_ajuj.
j=2 j=2

j_N-I,N,N+I

{cj {dj (0where _)= & d j= & _j=
ej_s_3 e j-N-3 e j-N-3

if j= 2,...,N-2

ifj = N + 2,...,2N

(32)

(33)

The matrix eigenvalue problem can be rewritten as

2N+I 2N+'

j=_ j=l
j*tN-I,N,N+I jtN-',N,N+I

(34)

where A0 = Aij + A,Ej + AiN_,d j + AiN÷,ej and B,j = Bij + Bi,c j + BiN_,d j + BiN÷,e j . The

global matrix problem is finally transformed to a reduced eigenvalue problem ._u = kl3u

where the matrices are (2N- 4)× (2N- 4) and all six boundary conditions have been

incorporated into the problem.

The principle difficulty in using spectral collocation techniques for solving stability

problems is the implementation of derivative boundary conditions. A condition such as

w(1) = 0 is not a problem as all that is required is the reduction of the global matrices by

eliminating one row and one column. Derivative data on the other hand, results in altering

all the elements of the matrices due to the global nature of the underlying series
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approximation.All datacontributesto thevalueof thederivativeat eachpoint
Nevertheless,for theBenardproblem,thespectralcollocationtechniqueis only slightly
moredifficult to codethanasecondorderfinitedifferencescheme.As is observedin the
subsequentresults,theadditionalcodingeffort is amplyrewarded.

4.0 Results

Under certain conditions, exact solutions to equations (I 5) through (18) have been

obtained. Pearson (1958) derived an exact solution to the Marangoni-Benard problem

(Ra = 0) for the case of neutral stability, _. = 0. His solution reduces to equation (35) for

an insulated free surface, Bi = 0. The critical value of the Marangoni number, equation

(35), versus the wavenumber is shown in Fig. 3 and is referred to as a neutral stability

curve since _. = 0 for all points along the curve. For values of Ma above this curve are

unstable since infinitesimal disturbances. Our objective is to use the above exact result to

investigate the accuracy of the aforementioned discrete formulations, so we do not

consider alternative exact or approximate solutions which exist for the general problem.

The physical interpretation of these results in addition to results from other exact or

approximate solutions to the Benard problem are discussed in Pearson 1958, Scriven&

Stemling 1964, Smith 1966, Chandrasekhar 198 l, and most of the other references cited

in section 6.0. We now compare the numerical results to the exact solution.

8et 2 cosh(t_)(a - sinh(a) cosh(a))

Mac = et 3 cosh(cz) - sinh 3(a) (35)

400
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Figure 2

Marangoni-Benard Neutral Stability Curve

(Exact Solution)

[ I I I I ;

1 2 3 4 5 6

Ct

Marangoni-Benard Neutral Stability Curve,

Exact Solution for Bi=0 (Pearson, 1958)
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Neutral stability curves for the Marangoni-Benard problem which were generated using a

2nd order finite difference scheme and spectral scheme are shown in Figs. 3 and 4,

respectively. The_ number of points across the fluid depth, N, (in the z-direction)

represents the spatial resolution used to generate a given curve. In Fig. 3 the neutral

stability curve converges to the exact solution as the spatial resolution increases from

N -- 4 to N -- 100. The N = 50 and N = 100 curves are visually indistinguishable from the

exact solution. Fig. 4 reveals that the neutral stability curves computed using the spectral

formulation also converge to the exact solution as the spatial resolution increases. The

spectrally generated neutral stability curves shown in Fig. 4 are visually identical to the

exact solution for spatial resolutions as low as N = 10. In both Figs. 3 and 4, the

numerically generated neutral stability curves tend to diverge from the exact solution with

increasing wavenumber. It is also observed that the finite difference solution converges

from above the exact solution while the spectral solution converges from below exact

neutral stability curve.
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Figure 3 Marangoni-Benard Neutral Stability Curves

Computed Using A 2nd Order Finite Difference Scheme.
N Is The Number Points Through The Fluid Layer.

Figure 4 Marangoni Neutral Stability Curves

Computed Using A Spectral Collocation Scheme./_

The Number Points Through The Fluid Layer.

The error in the Marangoni number for the finite difference and spectral schemes is

plotted as a function of wavenumber in Figs. 5 and 6, respectively. In both figures, error

is plotted using a logarithmic scale while the wavenumber. (z, is plotted with a linear
scale on the abscissa. The error (ordinate) range differs between the two figures so that

the error characteristics of each discrete scheme could be observed. The error is defined

as Max - Ma .... where Ma N is the Marangoni number computed from a discrete
Ma_u=

formulation for a given spatial resolution (N points) and Maexac t is computed using

equation (35). Both discrete schemes are observed in Figs. 1 through 4 to converge to the

exact solution as the spatial resolution, N, increases. The finite difference errors for each
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curve increase approximately an order of magnitude over the given wavenumber range as

observed in Figure 5, while the spectral error shown in Figure 6 increases four to five

orders of magnitude with wavenumber. For N greater than approximately seven, the

spectral error remains considerably less than the finite difference error for the range of tx

considered.
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Selected error values of the two schemes for wavenumbers of 2 and 5 are tabulated in

Tables 1 and 2, respectively. The errors for, a = 2, the critical wavenumber were smaller

than those of the larger wavenumber, ot = 5. In Fig. 7, the Ma error is shown on a log-log

plot as function of the spatial resolution (N grid points) for both discrete formulations.

Comparing Ma error values at a wavenumber of 2 and N = 10, the error for the spectral

scheme is seen to be five orders of magnitude smaller than the finite difference error.

Furthermore, after increasing the spatial resolution of the finite difference scheme to

N = 100, still gives a spectral error for N = 10 that is 3 orders of magnitude smaller. The
reduction in error for the finite difference scheme is essentially proportional to N 2, as

expected since the scheme is 2 nd order accurate. A slope of-2.02 was computed for the

finite difference curve in Fig. 7 which is within 1% of the expected value of 2. The slope

was computed from a least squares fit of the finite difference data in Table 1. The error

for the spectral formulation is expected to decrease exponentially with increasing N

(Boyd, 1989, Canuto et. al., 1987). However the error results in Table 2 show that the

exponential rate of convergence is exceeded for this particular problem. Fig. 7 vividly

illustrates that the spectral scheme results in a significant reduction in error with

considerably fewer grid points than the central difference scheme for this particular

problem. The spectral formulation has also been shown to out perform finite difference

methods when applied to other hydrodynamic stability problems (Canuto et. al., 1987,

Boyd, 1989). The exceptional performance (greater than exponential convergence) of the

spectral collocation scheme for this problem was not anticipated by the authors.

Table 1

Spatial

Selected Marangoni Number Errors •

For Wavenumber, ct=2

resolution

N

5

Finite

Difference

1.085x10 -1

100

Spectral

2.920xi0 -2

10 2.600x10 "2 3.400x10 "7

15 l.l15x10 "2 4.529x10 "11

50 1.025x10 "3

2.561x10 -4

Table 2 Selected Marangoni Number Errors

For Wavenumber, _t--5

Spatial resolution

N

Finite

Difference

5.756x10 -1

Spectral

2.808x10 -15

10 1.309x10 "1 2.525x10 "4

15 6.434x10 "95.710x10 °2

5.075x10 -3

1.268x10 -3

50

I00

As stated throughout, the ability to reduce the size of N is crucial to the eigenvalue

problem, A_ = _.B_. Inverting B takes O(N 3) operations; the matrix multiplication of

C = B-_A requires O(N3); and solving the regular eigenvalue problem, C_ = _._, requires

O(N 3) operations. Neglecting all other operations than those identified above, for a grid

resolution of N=l 0, it requires appropriately 3000 operations to compute the eigenvalues

while it requires O(3x 106) operations for N=100. The number of iterations required to

converge to Ma c at one wavenumber is O(10), ie., the matrix eigenvalue problem is

solved approximately ten times for each wavenumber.
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5.0 Concluding Remarks

A spectral scheme, the Chebyshev collocation formulation was used to perform a

hydrodynamic (linear) stability analysis of the Benard problem. The problem reduces to a

generalized eigenvalue problem, Ax = _,Bx, which can be reduced to a regular eigenvalue

problem, Cx = Ex by inverting B. Implementation of the spectral scheme was described.

There is a bit of a learning curve that must initially be overcome to comfortably setup the

spectral formulation if one has no previous experience with spectral methods. Afterwards,

the spectral scheme requires only slightly more time to set up than the 2nd order finite

difference scheme and is likely to be easier to program than higher order finite difference

schemes. A comparison of the results from the spectral and finite difference scheme

reveals that the spectral scheme out performs the finite difference scheme by a

considerable margin. The error of the spectral scheme is at least three orders of magnitude

smaller than the finite difference error for N = 10 and seven orders of magnitude smaller
than finite difference error for N = 15.
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SUMMARY

An algorithm has been developed for time-dependent forced convective diffusion-reaction

having convection by a recirculating flow field within the drop that is hydrodynamically coupled at

the interface with a convective external flow field that at infinity becomes a uniform free--streaming

flow. The concentration field inside the droplet is likewise coupled with that outside by boundary

conditions at the interface. A chemical reaction can take place either inside or outside the droplet,

or reactions can take place in both phases.

The algorithm has been implemented, and for comparison results are shown here for the

case of no reaction in either phase and for the case of an external first order reaction, both for

unsteady behaviour. For pure interphase mass transfer, concentration isocontours, local and average

Sherwood numbers, and average droplet concentrations have been obtained as a function of the

physical properties and external flow field. For mass transfer enhanced by an external reaction, in

addition to the above forms of results, we present the enhancement factor, with the results now

also depending upon the (dimensionless) rate of reaction.

INTRODUCTION

There are many industrialand environmental processesin which two-phase fluid-liquid

systems are in use. Gases may be dispersedas bubbles in liquidphases,such as occurs in bubble

columns and sparged vessels.Liquidsmay be dispersedin gases,such as occurs in scrubbersand

in the atmosphere. And a liquidthat isimmiscible or partiallymisciblein another liquidmay

be dispersedin a liquid-liquidspray column extractoror reactor. The design of such systems

may involveheat transfer,eitherintentionallyor incidentally,but the widestrange ofapplications

involvesmass transfer.

Interphasemass transfermay proceed intoor out of the dispersedphase. One (ormore)

chemical reaction(s)may takeplacein eitherthe dispersedor the continuousphase in order to en-

hance the rateofmass transfer.In two-phasereactions,certainofthe reactantsmay be transferred

from one phase intothe other,where the reactiontakesplace,and the reactionproducts may then

be transferredback intothe firstphase.Reactionsmay alsooccur in both phases.

Because ofthefinite,generallysmallvolume ofeach drop orbubble,interphasemass transfer

unaccompanied by chemical reactionis inherentlyunsteady,regardlessof the directionof mass

transfer.Even ifthereisa reactionthat admits ofa steady statein the drop or bubble,unsteady

behavior may neverthelessbe ofpracticaleven primary importance.

The continuousphase isinevitablyin motion relativeto the dispersedphase,and forclean

systems (containingfor instanceno surfaceactiveagents)the motion in the two phases willbe

hydrodynamically coupled.
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The genera]formulationcouldtakeintoaccount eitherlinearornonlinearchemica]reactions

in eitheror both phases,and itcould incorporateany velocityfieldthat can be expressed as a

functionof r and d. Neitherare variablepropertiesexcluded.

In order to demonstrate the utilityof the algorithm,for concretenesswe undertake the

mathematica] descriptionof a liquid-liquidsystem in which a firstorder reactiontakes placein

the continuous phase. The dispersedphase issufficientlydilutethat the dropletswhich sediment

(eitherfallingunder theirweight or risingbecause of buoyancy) may be assumed isolatedin an

infinitemedium, both with regardto fluidmechanics and to diffusionand reaction.The droplets

are taken smallenough thatinterfacia]tensiondominates shape effectsand they are spherica].Al-

though the approach we take and the methods we use do not requirethatthat viscositydominates

flow effectsand that the velocityfieldshave low Reynolds numbers, we nonthelessconsiderthe

hydrodynamically coupled Hadamard -Rybczinsky profileforcirculationwithinthe dropletdriven

by an externalvelocityfieldthat becomes a uniform streaming flowfarfrom the droplet.Physi-

caland chemica] propertiesare assumed constant,which would be the casefor diluteisothermal

systems, and we thus ana]yzeinterphasemass transferforthe forcedconvectivediffusion-reaction

single-dropsystem. We investigatespecifica]lythe roleof the reactionrate,as measured by an

appropriateDamk6hler number, the solubilityof the solutein the phases,as expressedby the lin-

ear distributioncoefficient(Henry'slaw),the ratioof convectionto diffusion,as measured by the

Pecletnumber, and the ratioofthe viscositiesand thatofmoleculardiffusivitiesof the two phases.

GOVERNING EQUATIONS

The dimensionlessforcedconvectivediffusion-reactionequationsgoverning the solutecon-

centrationsin the drop C0 < r < I) and the continuous(I < r < oo) phases,i= 1,2,respectively,

can be representedin the form

0c(i)0"-'_"% K! i)v(i)'Vc(i)= K(i)V2c(i)- K!i)c(i), (i)

where i = 1correspondstothe interne/domain 0 < r < 1,and i= 2 to the externa]one 1 _<r < oo.

The dimensionalparabolicpartialdifferentia]equationshave been rendered dimensionless

using the dropletradiusR as the characteristiclengthscale.The concentrationsare measured in

unitsof the initia]drivingforce,

in which

c (i) = H(i)6(i) _ H6,.., ,i= 1,2, (2)
_o- H_oo

f

H(i)= _ i, i=l

[H, i=2,

with H the Henry's "law" distribution coefficient, and

(3)

t=0: 6(I)=60, 6(2)=6oo. (4)

The characteristictime scalecan be selected,forexample, on the basisofthe fastestphysical

or chemical process,occurringin the system, viz.,

"r.= min('rc(oi)v, -'(_),die, _'(')rxn, i= 1,2), (5)
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in which

r( 0 _ R ,r(O R 2 r(d) 1
bc°"_ /(0(_)Uoo' dJ_-- D(0' rxn= k-'_' i= 1,2. (6)

The diffusivitiesand rate constantsforthe firstorder chemicalreactionsare denoted by D(0 and

k(0,respectively,and the K's representdifferentcombinationsofstandard dimensionlessparameters

fordifferentchoicesofr.,as indicatedin Table 1.

Although our numerical implementation of the algorithm requiresonly that the velocity

fieldsin the two phases be separable,we have selectedthe Hadamard - R.ybczinskysolutionfor

the convectingvelocitiesin the dispersedand continuous phases to establishconnectionswith

earlierresearch[7,8, 9]. In thisinstance,the characteristicvelocityin each phase, with Uoo the

freestreaminguniform flowat infinity,istaken as

in which

with the viscosityratio

U(')= f(')(/_)U_, i= 1,2, (z)

1

/I)(#)_ 2(i + #)' f(2)(/_)=i, (8)

The equations (10) are the ones used in the sequel,reflectingthe selectionof r(n)di_as the

unitoftime:

• ,------_._ac(0\

aT +-T" \ " a, ,-

-D(2) _--/_-_ [(1- A )-_--] } (10)

-DaI_-D-_" c(d)+ _o- H6oo] ' i= 1,2,

with A = cos@, subjectto the boundary conditionsat the dropletinterface,

1 : I c(1) = c(2)
7"

t ac(I) ac(2)
H.D = --b7-

and at the limits of the overall domain,

(11)

_' -- 0 : C (1) < O0 (12)

r_co: c(2)_0

Periodicboundary conditionsin the anglevariable,

(13)
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ac(i) _=0,=a_ = 0, i: 1,2,

are satisfiedautomaticallyafterintroductionofthe new independent variableA.

The concentrationsare subjectto the initialconditions:

(14)

t "-- 0 : C (1) -" i, C (2) "- 0 (15)

The actualdirectionof mass transfermay be out of or intothe drop, depending upon the

drivingforce(c0- H_oo), even though the formulationof the problem suggeststransferfrom the

droplet.

The oppositedirectionof mass transferin the actualproblem would lead tothe appearance

ofthe inhomogeneous partinthe reactionterms in (10)(butonly when the correspondingK (0 # 0).

THE ALGORITHM

The problem islinear,and we usethe Galerkinspectralmethod forthe spatialdiscretization.

The advantages of thismethod are wellknown [I,2].

Boundary conditionsat the originofthe droplet(12)and at infinity(13)and the symmetry

boundary conditions(15) are implemented by the Lanczos tau-method [1,2,14].

We expressthe unknown functionsc(i)(%A,r)in a customary manner,

M

c(i)(7'A'r)----E c(m/)(r'r)Pm(A), d- 1,2, (16)
rn,=0

in which the P,_(A)arethe Legendre polynomialsoforder m and the unknown coefficientfunctions

c_)(_-,r) are termed "radialfunctions"forbrevityin the sequel.

The discretizationin the radialdirectionisperformed in somewhat differentways for the
internaland externaldomains.

Using equation (10) for mass transferinsidethe droplet (i- I),itis a simple matter to

show thatfunctionsc_)(r,r) obey the followingrestrictions:

c_')(_,r= 0)= 0, t # o, (lZ)

°el') =0, t#l,
_7" r=O

evenfunctionof 1

,)- oddfunctionof

(18)

k:O, 1 .... (19)

On the basisoftheserestrictions,the radialfunctionsinsidethe dropletwere approximated

by a seriesin even Chebyshev polynomials:

N(1)

c_)(r,r)=6.,,o'ao(r)-Fr_"'_"]_ ¢_?,,(r)T2._2(r), m=O,l,...,M, (20)

in which the Tn(r ) are Chebyshev polynomials of the first kind of order p, and

294



= 2, j--0,i,... (21)

sl- 1, _2j+I-3, i-- 1,2,... (22)

Using (20)we automaticallysatisfyboundary condition(12) and avoid the singularityat

the originof the drop;the functiona0(r) representsthe valueof the concentrationat the origin.

Such an expansion on the interval0 _ r < 1 isvalidas the even Chebyshev polynomials

form a complete setfor the type offunctionsconsidered[10].

The use of halfthe commonly used interval[-I,I]permitsus to double the highestorder

of the polynomialsused,leavingthe number ofterms in the seriesunaltered.

The nonuniformityof the distributionof nodes in the spectralmethod (theirnumber in

closeproximity to the surfaceishigherthan near the origin)matches the physicsof the problem

as the concentrationgradientnear the interfaceismuch larger.

For the semi-infiniteexternaldomain we implement the widelyused procedure of truncat-

ing it at an appropriatelylargeradiustoo,farenough from the interfaceto make negligiblethe

disturbanceintroducedby truncation.The boundary conditionat infinity(13)isnow imposed on

thisartificialboundary. Itcouldbe imposed as "hard", "soft"[12]or "behavioral"[1,13].We use

the "hard" one,

r = too: c(_)= 0 (23)

because itimmediately resultsin the originalboundary condition(13) ifroo _ oo.

Itisnecessaryto realizethatby doingthiswe are changingthephysicalsenseofthe problem.

The decreaseto zeroof the concentrationinfinitelyfarfrom itssourceiscaused physicallyby the

spreadingof a finiteamount of the speciesover an infinitespatialvolume. After introductionof

the boundary sphereat r = too,we model thisdecreaseby imposing what amounts to an infinitely

fastheterogeneous reactionon the artificialboundary too.The only justificationfor thisisan a

poster{or{one, _iz.,by checkingthat the increaseof too does not alterthe solutionin the vicinity

of the dropletand inparticularthe interphasemass transfer.

Our computations have confirmedthisand show that when too ischosen sufficientlylarge

the choiceof the particulartype of boundary conditionsmentioned above does not influencethe

resultantconcentrationdistributionin regionswhere itsvaluedifferssignificantlyfrom zero.

The domain i < r < r_o ismapped onto the interval-i < z < I in such a way that the

point z - 1 matches r -- i and the point z -- -1 matches r - too.Among the wide varietyof

possiblemappings two are used more oftenthan others,the exponentialand rationalones [1,2].

A comparison by Grosch and Orszag [11]has shown that the lattermapping has some advantages

over the former.

Specifically,we use

,.-(i+6)
= (24)

0
where 6 isthe parameter representingthe distancebetween the dropletsurfaceand point mapped

into z - 0. Itisworth mentioning that we have alsoimplemented the exponentialmapping and

could findno advantages foritoverthe rationalmapping.

The radialfunctionsinthe externaldomain are expanded as
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N(=)

c_}(r,z)= __, ¢_!,(r) Z,(z), m=O, 1,...,M, (25)

where the Z.(z), n = 1, 2,..., N (2) are linear combinations of Chebyshev polynomials, each satis-

fying the boundary condition following from (13):

Z,(z = -i) = O, n = 1,2,...,N(2). (26)

We take

z3 (z) = i

= + 1

Thus, we reduce the system of partial differential equations for two initially unknown func-

tions c(1)(% A,r) and c(2)(r, :_, r) to s larger system of ordinary differential equations in v, for

a0(_'), ¢_?,,, ¢_?,,, m=0,1,...,M, (28)

n ! = 1,2,...,N 0), n2 = 1,2,...,N (2).

The total number of these unknown functions is 1 + (M + 1) (N(1) + N(2)).

In order to obtain equations for these functions we use the conventional Petrov - Galerkin

method, i.e., the basis functions are taken as the test functions [2]. We define two inner products:

f_" f01 dr(f,g)(I)= dl f .g

f f(f, g)(2) = d:_ f .g

Forming by (29) the inner product of (10) for i = 1 with the test functions

(29)

(30)

PoCk)To(r), P,,,CA)r _''T2.,-2(r), m= 0,1,...,M, nl = 1,2,...,N 0)- 1, (31)

and by (30) the inner product of (10) for i = 2 with the test functions

P_(A) Z,,Cz), m=0,1,...,M, R2=1,2,...,N (2)-1, (32)

we obtain two vector equations

A (i) de_(i)d--_= (-K!i)B (i'') + K(di)B (i'd) - K(,.i)B (i'')) • qb(1) + K_(i) b (') , i = 1,2. (33)

Here A (i), B (i'c), B (i'd), B (is) are {1 + (M + 1)(N (/) - 1), 1 + (M + 1)N (i)} matrices,

b (i) - {1 + (M + 1)N (/)} are the vectors of inhomogeneous terms, and qb(i)(_-) - {1 + (M + 1)N(/)}

are the unknown vectors,

@(x)(_.) = ( no, ._(1) ._(1) ,¢_!1, _(1) )r, (34)
_'0,1 ' " " " _"0,N(*) ' ...... ' WM,N(*)
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,_(2) _(2) _(2) _(2) )r. (35)4,(2)("r) --" ( W0,1''" "_'0,N(2)'''" %WM,l''''' %WM,N(2)

The remaining 2 (M + i) equationsare derivedfrom the boundary conditions(ii).

Upon substituting(20) and (25)into (11),multiplyingby P,,(A), m = 0,I,...,M and

integratingI from -1 to I,we obtaintwo setsofM+I linearalgebraicequations:

Q(1).4,0)= Q¢2).4,(2) (36)

H.D.S0)-4, O) = S(2).4,(2), (37)

where Q(i), S(0 are {(M + i), (M + i)(I+ N(_))}matrices,i= 1,2.

By expressing._(I) and -_(_)_m,N(1) _m,N(2), m = 0,I,...,M, using the system (36)-(37) and

substitutingin the system (33),we arrivefinallyat the system of I + (M + 1)(N(*)+ N(2) - 2)

linearODEs:

d4,

g- j

The constant matrices B (c),

diffusive,and reactiveterms in the originalequation(10),b isan {I + (M" + I)(N0) + N(2) _ 2)}

constantvector,and 4,(r) isthe vectorof unknown functions

= (B(C)+ B (_)+ B(')).4,+ b. (38)

B (_)and B(') correspond respectivelyto the convective,

_(,) _(,) , _(2) _(2) , ._(!)M. ¢(i) _(2) _(n) _r4, (39)
'/'0,1," • "_V0,N(_)-I '/'0,1,• " •_V0,N(2)_ 1 " • ' " " " M',N(*)-I ' _Air,l' " " "_M',N(2)-I )

and not simply a concatenationofvectors4,0) and 4,(2).

The matrices A, B (_)and B(') are block-diagonal.They allhave M+I nonzero square

{NO)+N(_)-2, N0)+N(2)-2)} matriceson theirmain diagonalsand theirfirst1+(N(1)+N(2)-2)

elements inthe firstrow and the firstcolumn arenonzero.

The matricesB (c)that resultfrom transformingthe convectiveterms alsohave blockstruc-

turewith the same block sizes.However, they are no longer block-diagonaland the amount of

nonzero block-diagonalsdepends on the velocityfieldsv(0, i = 1,2. The higherthe degreeof l

thatisinvolvedin the velocityfieldexpressions,the greaterwillbe the couplingbetween the radial

functionsofdifferentorders.And the increaseofthe orderofthiscouplingleadsto a corresponding

increasein the number of nonzero block diagonalsin B (c).

For the Hadamard - Rybczinsky field,forexample,thesematricesareblock-tridiagonal,but

forthe velocityfieldin [15],validforhigherReynolds numbers, itwould be block-pentadiagonal.

The discontinuousinitialconditions(15) are not appropriatefor computations. Instead,

we used the analyticalsolutionfor the pure diffusioncase (no convection,no chemical reaction)

derivedin [16].The concentrationdistributionsforverysmall time valueswere expanded overour

basisfunctionsT2,-2(r) and Z,, n = 1,2,...to initializethe computations, and the coefficients

obtained were used as initialconditionsfora0(r), #_!,, ,and _b_!,2, m = 0,1,...,AI, _I =

1,2,...,N0)-I, n2= 1,2,...,N(2)-I.

For time discretizationof the system (38)we used the first-orderbackward Euler method.

Defining4,"as vector4,at the n-th time stepofmagnitude At- and

B = B (c)+ B (d)+ B (_), (40)

system (38) can be rewrittenas
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(A- ArB).A4,"+I = ArB.4, '_ + Arb, (41)

where

A4, "+I = 4' "+I - 4'". (42)

Every time step system of linear equations (41) was solved by regular Gauss elimination

(preceded by LU decomposition) with the following iterative refinement [3]. The matrix on the

left side of (41) has the same structure as the matrix B; as mentioned, it is block-tricliagonal

for the Hadamard-P_ybczinsky velocity field. Our attempts to apply block-elimination methods (in
particular, the block Thomas algorithm [4]) failed, presumably because block LU factorization does

not involve pivoting, which is essential when diagonal dominance does not occur (which is the case
for high Peclet numbers).

We considered the matrix on the left side of (41) as a banded one with bandwidth 1 +

3 (N (x)+ N(2) - 2).

As long as this matrix depends on the time step and its factorization is a time-consuming

process, only two values of the time step were used for each run. A smaller one was used for an

initial time period and an another one for the subsequent time range.

The numbers of terms in series (16), (20), and (25) depend on the steepness of the con-
centration gradients and were different for different values of Peclet and Damkbhler numbers. The

maximum numbers used were M -- 87, N0) = 25, N(2) = 97.

As is well known [1, 2], an increase in the number of terms in a spectral series (especially

in the series in Chebyshev polynomials) leads to very high condition numbers for the resulting

system of linear equations. This was alleviated by using double precision in all computations and,
as mentioned above by application of the iterative refinement to the solution obtained with the

Gauss elimination procedure.

QUANTITIES OF INTEREST

The most practically interesting quantity in extraction problems is the amount of material ex-

tracted by a particular instant in time. For the problem under consideration (i.e., when species are

extracted from the droplet) this can be conveniently characterized by the time-dependent average

dimensionless concentration of species remaining in the drop:

2 1

This quantity changes in time as a result of mass transfer out of the droplet. The local and

surface average rates of this transfer are characterized by corresponding mass transfer coefficients,

the quantities which when multiplied by the driving force give the respective mass transfer rate.

The nondimensional mass transfer coefficient is usually referred to as the Sherwood number Sh,
which is anaJogous to the Nusselt number in heat transfer problems.

Different kinds of Sherwood number can be introduced, depending on the driving force on
which they are based and the domain to which they are related.

For the problem of single-drop extraction, the instantaneous driving force F (d_) for mass

transfer is the difference between the concentration of the transferring species in the droplet and

that far away from it, taking into account the step change of the concentration at the interface due

to solubility,
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F(&) = _I) _ H_, (44)

where _i) is the dimensional average concentration of species in the droplet.

Often the Sherwood number is based on the maximum possible (in our case, initial) driving

force:

F0(a_)= a0- Ha_. (45)

Here we consider only the external Sherwood number, i.e., the nondimensional rate of

transferof speciesfrom the externalsideof dropletsurfaceintothe externalflow.

The localand average externalSherwood numbers definedon the basisof the maximum

drivingforceare respectively:

acc_> (46)
Shloc,O= -2H.D Or ,=I

and

_1 0c(I)Sho = -H.D dA.
I 87 r=l

Corresponding valuesbased on the instantaneousdrivingforceare:

• Shloc,O
Shloc - c__(1)

(47)

(48)

Sao (49)
Sh- c-(*)"

The chemical reactionin the externalregionincreasesthe rateof the extraction,and this

increaseischaracterizedby the enhancement factor,which isthe ratioofthe correspondingmass

transferrates[5]:

E - Sh(Da_2l) # O) (50)

Sh(Da_)= 0)

COMPUTATIONAL RESULTS AND DISCUSSION

The resultsofthe computations to be presentedcoverthe followingrangesofparameters:

0.25 _ D < 4,

0<_ Pe (2)<_500,

0 <_ Da_ ) < 1000,

H=/_=I.

The characteristic time scale was chosen as

r, = r (2)
cliff, (51)
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which isjustthe Fouriernumber based on the diffusioncoefficientof the externalfluid.The times

appearingon the plotsare expressedintheseunits.The valuesofPecletnumber Pe and Damk6hler

number Da presentedon the plotscorrespond to Pe(2)and r}a(2) respectively.II,

To illustratequalitivelythe processof pure mass transfer(no reaction)from the droplet,

we presentin FiguresI-3 the isocontoursof constantspeciesconcentrationat differenttimes for

variouslevelsof externalconvection(Pe (2)= I0,200,500, respectively).The well known and

intuitivelyexpected increaseofmass transferwith increasingconvectionisapparent.

The influenceof internalcirculationon the development of the mass transferprocessis

illustratedin Figures 4-5 where we presentthe isoconcentrationcontours for the same external

Pecletnumber (Pe (2)= 500) _md differentratiosof internaland externaldiffusivities(D = 0.25

and D = 4.0).
For ]3 --0.25the internalconvectionismuch stronger,in the sensethat the value ofPe(I)

islarger.As a consequence the concentrationisocontoursinsidethe dropletliecloseto the internal

streamlines,a resultalreadyobtainednumericallyby Johns and Beckmann [7]for the specialcase

of mass transferresistancesolelyinsidethe droplet.The coincidenceof internalisocontourswith

internalstreamlinesalsoconstitutedthe basic assumption of Kronig and Brink's model of mass

transferin a circulatingdrop [6].From a simplecomparison of the isocontourlevelsin Figures4

and 5 alone one infersthat the mass transferfrom a dropletfor ]:)=4ismuch more intensethan

for ]:)=0.25.The reasonthat the internalPecletnumber Pe (I)isgreaterforD --0.25 isnot that

the internalcirculationisgreater,foritisnot (_ --1),but that the internaldiffusivityissmaller.

Nonetheless,itiscustomary forbrevityto describean increasein Pecletnumber as an increase

in convection,ratherthan the more lengthy but more accurateincreaseof the ratioof convection

to diffusion.In thisusage,one may phrase the conclusiondrawn from Figures I-5 as follows:

increasedconvectionoutsidethe dropletincreasesthe rateofextraction,but increasedconvection

insidesuppressesmass transfer.

The influenceof the externalreactionrate on the concentrationdistributionis shown in

Figures 2, 6 and 7. As could have easilybeen anticipated,an increasein _.nn.(2)Izresultsin faster

extractionand an almostimmediate disappearenceofextractedspeciesoutsidethe droplet(almost

no speciespresentforDa_ )= 100 in Figure 7).

Figures8 and 9 show the effectofreactionrateon thelocalSherwood number. The valuesof

Shloc,ogo to zerowith time forallvaluesofthe anglevariabled,although the surfacedistributionof

Sherwood number based on the instantaneousdrivingforceapproaches a nonvanishing asymptote.

An increasein the reactionratethus resultsin a generalincreaseofmass transferand ofvaluesof

the Sherwood numbers, but the temporal variationofvaluesoflocalSherwood numbers at different

locationsislesstransparent,warrantingfurtherinvestigation.

Figure 10 reflectsthe behaviorof averageSherwood number S/zin time for differentvalues

of the externalPecletnumber Pe (_)forthe no-reactioncase.The oscillationsof S/twere obtained

computationallyby differentinvestigatorsincludingJohns and Beckmann [7]and Oliverand Chung

[9],who solvedthe conjugateunsteady heattransferproblem, which ismathematicallyequivalentto

the mass transferproblem under considerationwhen thereisno chemicalreactioninvolved.These

oscillationsare causedby theinternalcirculation,with the most detailedphysicalexplanationbeing

given by Brignellin [8].Consequently,the periodof theseoscillationsissmallerand the amplitute

greaterthe higherthePecletnumber is.The strongerconvectionalsoleadsto a highermass transfer

rateas itcreatesthe thinnerdiffusionboundary layerson the both sidesofthe dropletsurface.

Figure 11 illustratesthe influenceof the rateofexternalchemical reactionon the average

Sherwood number. The plotsconfirm the conclusionsmade above on the increaseof the rateof

extractionwith the increasingexternalconvectionand rateofexternalchemical reaction.
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In a more apparent way, this is reflected in Figure 12, where the decrease of the average

droplet concentration with time is shown. From this picture we can also deduce the very important

conclusion that an increase in the reaction rate beyond some specific value will not benefit the

extraction results (the diffences between the average droplet concentration for Da_ ) values of 300

and 1000 are quite small).

Figure 13 shows the effect of reaction rates on the values and temporal evolution of the

enhancement factor E. The oscillations here are the consequences of internal circulation, the same

as for the corresponding average Sherwood number on Figure 10. The values of E corresponding

to the same reaction rate are higher for smaller Pe(2) (lower convection). A possible explanation

could be that the corresponding values of Da_ 2), which are just the ratios of Da(x_ ) and Pe(2), are

smaller for higher Pe (_).

In closing, we want to emphasize that the purpose of this article has been to present the

numerical algorithm we have developed and to illustrate some of the kinds of results that can be

obtained for this concrete situation. Our subsequent articles will include additional results for other

classes of forced convective diffusion-reaction problems for single drops, as well as more detailed

analyses of these and other results.
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NOMENCLATURE

_0

_(_)

c(i)

D (i)

D

D@ )

D.(i)

E

/(i)

H

k(i)

M

N(i)

pe(i)

7"

R

t

v.¢o
U.o
v(i)

P

p(_)

7"

r,(i)
conv

rdi(i)

r(_)
xn

-dimensional value of the uniform concentration in the origin of the droplet at t = 0

-dimensional value of the concentration far from the drop

-dimensional concentration in the i-th domain, i = 1, 2

-dimensionless concentration in the i-th domain, i = 1, 2

-molecular diffusivity of the solute in the fluid in the i-th domain, i = 1, 2

-molecular diffusivity ratio, D(1)/D(2)

the i-th domain , ...k(i) R
-first DamkShler number in ft,J(p) U_' i = 1, 2

_mD_(i)2
-second Damkghler number in the i-th domain, _, i = 1, 2

-enhancement factor, eq.(50)

-factor showing the viscosity ratio dependence of the

velocity scale in the i-th domain, i = 1, 2

-distribution coefficient (Henry "law" constant)

-chemical reaction rate constant in the i-th domain, i = 1,2

-highest order of the Legendre polynomials used in the expansion

in the angular direction

-number of terms in the expansion of radial functions in the i-th domain , i = 1, 2

-Peclet number in the i-th domain, 2 U_/(i)(_) R
D(_) , i = 1,2

-dimensionless radial coordinate

-droplet radius
-dimensional time

-characteristic velocity scale in the i-th domain, i - I, 2

-velocity of the flow at the infinity

-velocity field in the i-th domain nondimensionalized

by the corresponding velocity scale U! i), i -- I, 2

-polar angle in spherical coordinate system
: COS

-molecular viscosities ratio, p(1)/p(2)

-molecular viscosity of the fluid in the i-th domain, i - I, 2
-dimensionless time

/_ i=1,2
-convection time scale in the i-th domain, f(i)(_) U_'

R2
-diffusion time scale in the i-th domain, D---'_' i = 1, 2

-chemical reaction time scale in the i-th domain, ,1_, i = 1, 2
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Table 1: Coefficients in eq.(1) depending on the choice of _', (i,j = 1,2)

v(J)diff

ony

r(J)
n
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Fig. 10 Time evolution of average Sherwood number Sh for Da=0 at different values of Pe
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